
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204 - Imperative Programming

Dr Siba Haidar

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

File Input/Output

Chapter 5

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

Streams

• Input and output, to or from,
– physical devices such as terminals and tape drives,
– files supported on structured storage devices,

• are mapped into à logical data streams,
– properties are more uniform
– 2 forms of mapping are supported
• text streams
• binary streams.

Dr Siba HAIDAR - Lebanese University - I2204

Streams

Text Stream
• ordered sequence of characters

composed into lines,
• each line consisting of zero or more

characters plus a terminating new-line
character

Binary stream
• ordered sequence of characters

(=bytes) that can transparently record
internal data

Dr Siba HAIDAR - Lebanese University - I2204

Streams

Text Stream
• data read in from a text stream will

necessarily compare equal to the data
that were earlier written out to that
stream

• only if
• the data consist only of printable

characters and the control characters
horizontal tab and new-line,

• no new-line character is immediately
preceded by space characters, and

• the last character is a new-line
character

Binary stream
• data read in from a binary stream shall

compare equal to the data that were
earlier written out to that stream under
the same implementation

• may, however, have an implementation-
defined number of null characters
appended to the end of the stream

Dr Siba HAIDAR - Lebanese University - I2204

Standard Streams

• when a C program start its
execute
– program automatically opens 3

standard streams
• stdin à input buffering [by default:

keyboard]
• stdout & strerr à output [by default:

screen]

Dr Siba HAIDAR - Lebanese University - I2204

Example program

int main() {
int var;
scanf("%d",&var);
//use stdin for scanning a integer from keyboard.
printf("%d",var);
//use stdout for printing a character

}

Dr Siba HAIDAR - Lebanese University - I2204

FILE pointers

• <stdio.h> header contains a definition for a type FILE
– usually via a typedef
– capable of recording all information to control a stream
• file position indicator
• pointer to associated buffer (if any),
• error indicator that records whether a read/write error has occurred,
• end-of-file indicator that records whether the end of the file has been

reached

• access contents of FILE directly à bad manners !!
– unless the programmer is writing an implementation of <stdio.h>

and its contents

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

Opening and Closing Files

• to open and close files, the <stdio.h> library has three
functions:
– fopen,
– freopen,
– fclose

Dr Siba HAIDAR - Lebanese University - I2204

Opening Files

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode, FILE *stream);

Dr Siba HAIDAR - Lebanese University - I2204

Modes

• The argument mode points to a string beginning with one of
the following sequences:

Dr Siba HAIDAR - Lebanese University - I2204

Modes

• open with read mode "r …"fails if the file does not exist or
cannot be read

• open a file with append mode "a…"
– all subsequent writes forced to end-of-file
– regardless of calls to fseek

Dr Siba HAIDAR - Lebanese University - I2204

Modes

• opened with update mode "… + …"
– both input and output may be performed
– output may NOT be directly followed by input without a call to

fflush() or to file positioning function (fseek, fsetpos, or rewind)
– input may NOT be directly followed by output without a call to a file

positioning function, unless the input operation encounters end-of-
file.

– opening (or creating) a text file with update mode may instead open
(or create) a binary stream in some implementations

Dr Siba HAIDAR - Lebanese University - I2204

The fopen function

– opens the file whose name is in the string pointed to by filename
and

– associates a stream with it.
• when opened,
– a stream is fully buffered
– the error and end-of-file indicators are cleared.

• function returns
– a pointer to the object controlling the stream.
– a null pointer if open fails

Dr Siba HAIDAR - Lebanese University - I2204

The freopen function

– opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream with it.

– mode used in the fopen function.
• freopen
– first close any file associated with stream
– failure to close is ignored
– error and end-of-file indicators for the stream are cleared.

• returns
– a null pointer if fails
– value stream if succeeds

Dr Siba HAIDAR - Lebanese University - I2204

Dr Siba HAIDAR - Lebanese University - I2204

Closing Files

#include <stdio.h>
int fclose(FILE *stream);

• stream flushed and associated file closed
– any unwritten buffered data for the stream

• à delivered to the host environment
• à to be written to the file;

– any unread buffered data à discarded
– stream is disassociated from file
– if associated buffer auto. allocated à deallocated

• returns
– zero if success
– EOF if errors

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The fseek and ftell functions

int fseek(FILE *stream, long int
offset, int whence);
long int ftell(FILE *stream);

• fseek function sets the file
position indicator

• for a binary stream,
– the new position, measured in

characters from the beginning of
the file,

– is obtained by adding offset to the
position specified by whence.

• 3 macros in stdio.h:
– whence = SEEK_SET à position is

the beginning of the file
– whence = SEEK_CURà position is

the current file position
– whence = SEEK_END à position is

the end of the file

• returns
– nonzero only for a request that

cannot be satisfied

Dr Siba HAIDAR - Lebanese University - I2204

The fseek and ftell functions

long int ftell(FILE *stream);
• ftell obtains the current value of the file position indicator
• for a binary stream,
– the value is the number of characters from the beginning of the file;

• for a text stream,
– unspecified information,
– usable by the fseek function for returning the file position indicator for the

stream to its position at the time of the ftell call;
– the difference between two such return values is not necessarily a meaningful

measure of the number of characters written or read.
• ftell returns
– current value of file position indicator if success
– -1L on failure, (stores an implementation-defined positive value in errno)

Dr Siba HAIDAR - Lebanese University - I2204

The fflush function

int fflush(FILE *stream);

• fflush causes any unwritten data for that stream to be deferred
to the host environment to be written to the file;

• If stream is a null pointer, fflush performs this flushing action
on all streams

• returns
– EOF if a write error occurs,
– otherwise zero.

Dr Siba HAIDAR - Lebanese University - I2204

The rewind function
void rewind(FILE *stream);
• sets the file position indicator to the beginning of the file.

Dr Siba HAIDAR - Lebanese University - I2204

The feof function
int feof(FILE *stream);
• tests the end-of-file indicator and
• returns
– nonzero if and only if the end-of-file indicator is set for stream,
– otherwise it returns zero.

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions

a. Input
b. Output

5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

Outline

Dr Siba HAIDAR - Lebanese University - I2204

The fgetc function

int fgetc(FILE *stream);

• fgetc
– obtains the next character (if present) as an unsigned char converted to an

int,
– and advances the associated file position indicator

• fgetc returns
– the next character, of
– if stream is at end-of-file, returns EOF

• (EOF is a negative value defined in <stdio.h>, usually (-1)).
– If a read error occurs, the error indicator for the stream is set and fgetc

returns EOF.

Dr Siba HAIDAR - Lebanese University - I2204

The fgets function

char *fgets(char *s, int n, FILE *stream);

• fgets at most n-1 characters into s.
• no additional characters are read

– after a new-line character (which is retained) or
– after end-of-file.

• a null character is written immediately after the last character read into the array.
• returns s if successful
• if end-of-file is encountered and no characters have been read into the array,

– the contents of the array remain unchanged and
– a null pointer is returned.

• If a read error occurs during the operation,
– the array contents are indeterminate and
– a null pointed is returned.

Dr Siba HAIDAR - Lebanese University - I2204

The getc function

int getc(FILE *stream);

• The getc function is equivalent to fgetc,
– except that it may be implemented as a macro.

• If it is implemented as a macro,
– the stream argument may be evaluated more than once,
– so the argument should never be an expression with side effects (i.e. have an assignment,

increment, or decrement operators, or be a function call).
• The getc function returns the next character from the input stream pointed to by stream.
• If the stream is at end-of-file,

– the end-of-file indicator for the stream is set and
– getc returns EOF (EOF is a negative value defined in <stdio.h>, usually (-1)).

• If a read error occurs,
– the error indicator for the stream is set and
– getc returns EOF.

Dr Siba HAIDAR - Lebanese University - I2204

The getchar function

int getchar(void);

• getchar is equivalent to getc with argument stdin.

Dr Siba HAIDAR - Lebanese University - I2204

The gets function

char *gets(char *s);

• gets is equivalent to fgets with argument stdin.
• This function and description is only included here for

completeness.

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions

a. Input
b. Output

5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The fputc function

int fputc(int c, FILE *stream);
• fputc writes

– the character specified by c (converted to an unsigned char)
– at the position indicated by the associated file position indicator,
– and advances the indicator appropriately.

• If the file
– cannot support positioning requests,
– or if the stream is opened with append mode,
– the character is appended to the output stream.

• returns
– the character written,
– if a write error occurs,

• error indicator for the stream is set, and
• fputc returns EOF

Dr Siba HAIDAR - Lebanese University - I2204

The fputs function

int fputs(const char *s, FILE *stream);

• fputs writes the string pointed to by s
• The terminating null character is not written.
• The function returns
– EOF if a write error occurs,
– otherwise it returns a nonnegative value.

Dr Siba HAIDAR - Lebanese University - I2204

The putc function

int putc(int c, FILE *stream);

• putc is equivalent to fputc except that if it is implemented as a
macro

Dr Siba HAIDAR - Lebanese University - I2204

The putchar function
int putchar(int c);

• putchar is equivalent to putc with the second argument
stdout.

Dr Siba HAIDAR - Lebanese University - I2204

The puts function

int puts(const char *s);

• puts writes
– the string pointed to by s and
– appends a new-line character to the output.

• The terminating null character is not written.
• returns
– EOF if a write error occurs;
– otherwise, it returns a nonnegative value.

Dr Siba HAIDAR - Lebanese University - I2204

Exemple 1

• write a program that creates a text file and stores in it 3 names
(one name per line)

• call it "names.txt"

Dr Siba HAIDAR - Lebanese University - I2204

• #include <stdio.h>
• #include <conio.h>

• void main(){
• char * filename="names.txt", *s1="toto\n",*s2="mimi\n",*s3="sisi\n";
• int r;
• FILE * f;

• f=fopen(filename,"w");
• if(f==NULL){ printf("fail to create\n"); return; }

• r=fputs(s1,f);
• if (r==EOF){ printf("fail to write\n"); return; }

• r=fputs(s2,f);
• if (r==EOF){ printf("fail to write\n"); return; }

• r=fputs(s3,f);
• if (r==EOF){ printf("fail to write\n"); return; }

• r=fclose(f);
• if(r!=0){ printf("fail to save\n"); return; }

• printf("Success: file written\n");
• getch();

• }

Dr Siba HAIDAR - Lebanese University - I2204

Example 2

• write a program to open “names.txt”
• and prints its content on the screen

Dr Siba HAIDAR - Lebanese University - I2204

• #include <stdio.h>
• #include <conio.h>

• void main(){
• char * filename="names.txt";
• int r;
• FILE * f;
• char s[256];

• if(!(f=fopen(filename,"r"))){
• printf("Fail to open the file\n");return;}
• while(!feof(f)){
• if(fgets(s,256,f))
• puts(s);
• }

• if(fclose(f)==0)
• printf("Success: file read and closed\n");
• getch();

• }

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions

a. Input
b. Output

6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The scanf family of functions

int fscanf(FILE *stream, const char *format, ...);
int scanf(const char *format, ...);
int sscanf(const char *s, const char *format, ...);

Dr Siba HAIDAR - Lebanese University - I2204

The scanf function

• fscanf
– reads input from stream
– under control of format that specifies the admissible sequences and how

they are to be converted for assignment,
– using subsequent arguments as pointers to the objects to receive converted

input.
• fscanf returns
– EOF if an input failure occurs before any conversion.
– otherwise, the number of input items assigned

• scanf is equivalent to fscanf with argument stdin

Dr Siba HAIDAR - Lebanese University - I2204

The sscanf function

• sscanf is equivalent to fscanf,
– except that the argument s specifies a string from which the input is

to be obtained,
– rather than from a stream
– reaching the end of the string is equivalent to encountering the end-

of-file for the fscanf function

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions

a. Input
b. Output

6. Direct I/O Functions
7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The printf family of functions

Dr Siba HAIDAR - Lebanese University - I2204

fprintf

• The fprintf function returns
– the number of characters transmitted, or
– a negative value if an output or encoding error

occurred.

Dr Siba HAIDAR - Lebanese University - I2204

printf

• The printf function is equivalent to
– fprintf with the argument stdout interposed before the arguments

to printf.
• It returns
– the number of characters transmitted, or
– a negative value if an output error occurred.

Dr Siba HAIDAR - Lebanese University - I2204

sprintf

• The sprintf function is equivalent to fprintf,
• except that the argument s specifies an array into which the

generated input is to be written, rather than to a stream.
• A null character is written at the end of the characters written;
• it is not counted as part of the returned sum.
• If copying takes place between objects that overlap, the behavior

is undefined.
• The function returns

– the number of characters written in the array,
– not counting the terminating null character.

Dr Siba HAIDAR - Lebanese University - I2204

example 3

• write a program that reads from
this file

• and displays the avg

Dr Siba HAIDAR - Lebanese University - I2204

example 3 bis

• write a program that reads from
this file

• and adds 2 pointsn to the grade
of jiji if it is less than 97

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions

a. Input
b. Output

7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The fread function

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

• The fread function reads,
– into the array pointed to by ptr,
– up to nmemb elements whose size is specified by size,
– from the stream pointed to by stream.

• The file position indicator for the stream (if defined) is advanced by the number of characters
successfully read.

• If an error occurs, the resulting value of the file position indicator for the stream is indeterminate.
• If a partial element is read, its value is indeterminate.
• The fread function returns

– the number of elements successfully read,
– which may be less than nmemb if a read error or end-of-file is encountered.
– If size or nmemb is zero, fread returns zero and the contents of the array and the state of the stream remain

unchanged

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions

a. Input
b. Output

7. Additional Remarks

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The fwrite function

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

• The fwrite function writes,
– from the array pointed to by ptr,
– up to nmemb elements whose size is specified by size to the stream pointed to by stream.

• The file position indicator for the stream (if defined) is advanced by the number
of characters successfully written.

• If an error occurs,
– the resulting value of the file position indicator for the stream is indeterminate.

• The function returns the number of elements successfully written, which will
be less than nmemb only if a write error is encountered.

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

a. Sequential and Random Access File Handling
b. The while(!feof(f)) loop

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The C stdio fseek, ftell and rewind Functions for use
with Files

• In computer programming, the two main types of file handling are:
– Sequential;
– Random access.

• Sequential files are generally used in cases where the program processes the
data in a sequential fashion
– i.e. counting words in a text file
– although in some cases, random access can be feigned by moving backwards and forwards

over a sequential file.
• True random access file handling, however, only accesses the file at the point at

which the data should be read or written, rather than having to process it
sequentially.

• A hybrid approach is also possible whereby a part of the file is used for
sequential access to locate something in the random access portion of the file,
in much the same way that a File Allocation Table (FAT) works.

Dr Siba HAIDAR - Lebanese University - I2204

Sequential and Random Access File

• The three main functions are:
– rewind() – return the file pointer to the beginning;
– fseek() – position the file pointer;
– ftell() – return the current offset of the file pointer.

• Each of these functions operates on the C file pointer,
– which is just the offset from the start of the file,
– and can be positioned at will.

• All read/write operations take place at the current position of
the file pointer.

Dr Siba HAIDAR - Lebanese University - I2204

The rewind() Function

• The rewind() function can be used in sequential or random
access C file programming, and simply tells the file system to
position the file pointer at the start of the file.

• Any error flags will also be cleared, and no value is returned.
• While useful, the companion function, fseek(), can also be

used to reposition the file pointer at will, including the same
behavior as rewind().

Dr Siba HAIDAR - Lebanese University - I2204

Using fseek() and ftell() to Process Files

• The fseek() function is most useful in random access files where
either the record (or block) size is known, or there is an allocation
system that denotes the start and end positions of records in an
index portion of the file.

• The fseek() function takes three parameters:
– FILE * f – the file pointer;
– long offset – the position offset;
– int origin – the point from which the offset is applied.

• The origin parameter can be one of three values:
– SEEK_SET – from the start;
– SEEK_CUR – from the current position;
– SEEK_END – from the end of the file.

Dr Siba HAIDAR - Lebanese University - I2204

Using fseek() and ftell() to Process Files

• So, the equivalent of rewind() would be:
– fseek(f, 0, SEEK_SET);

• By a similar token, if the programmer wanted to append a record to the
end of the file, the pointer could be repositioned thus:
– fseek(f, 0, SEEK_END);

• Since fseek() returns an error code (0 for no error) the stdio library also
provides a function that can be called to find out the current offset within
the file:
– long offset = ftell(FILE * f)

• This enables the programmer to create a simple file marker (before
updating a record for example), by storing the file position in a variable,
and then supplying it to a call to fseek:
– long file_marker = ftell(f);

Dr Siba HAIDAR - Lebanese University - I2204

Using fseek() and ftell() to Process Files

• // … file processing functions

– fseek(f, file_marker, SEEK_SET);

• Of course, if the programmer knows the size of each record or block,
arithmetic can be used.

• For example, to rewind to the start of the current record, a function call
such as the following would suffice:

– fseek(f, 0 – record_size, SEEK_CURR);

• With these three functions, the C programmer can manipulate both
sequential and random access files, but should always remember that
positioning the file pointer is absolute.

• In other words, if fseek is used to position the pointer in a read/write file,
then writing will overwrite existing data, permanently.

Dr Siba HAIDAR - Lebanese University - I2204

1. Streams
2. Opening & Closing Files
3. File Access Functions
4. Character I/O Functions
5. Formatted I/O Functions
6. Direct I/O Functions
7. Additional Remarks

a. Sequential and Random Access File Handling
b. The while(!feof(f)) loop

File I/O

Dr Siba HAIDAR - Lebanese University - I2204

The while(!feof(f)) loop

• Inside !feof loop,
– one should always check wether the input function succeeded or failed
– before further processing

• For the 3 types of the functions:
– direct input:

• fread returns the number of elements successfully read, so you can know if it
failed

– formatted input:
• fscanf returns EOF if failed

– character/string input:
• fgetc return EOF if failed,
• fgets returns NULL if failed

Dr Siba HAIDAR - Lebanese University - I2204

References

• http://en.wikibooks.org/wiki/C_Programming/File_IO

Dr Siba HAIDAR - Lebanese University - I2204

http://en.wikibooks.org/wiki/C_Programming/File_IO

