Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

12204 - Imperative Programming

Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

Linked Lists Exercises

Linked List Exercises

1. Linked List of Contacts

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: type contact

e contact type is defined to manage sorted linked list of contacts

e data stored concerns

— nName
— tel (int)
* define the data type contact

Exercise: Push contact

* write the Push function which pushes a new node to the head
of a contact list

— (push does not care of the order)

— the function type must be void

Exercise: printContact

* write the function printContact which prints a given contact

Exercise: printContacts

* write the function printContacts() that prints out the content
of a given contact list, a contact per line

— iterative version

— recursive version

Exercise: deleteContact

» write the function deleteContact() that given a list of contacts,
and a name, deletes the contact holding that name from the
list
— only first iteration
— all of them

— using localRef or not
— iterative version

— recursive version

Exercise: deletelList

e write the function deletelList() that takes a list of contacts,
deallocates all of its memory and sets its head pointer to NULL
(the empty list)

Exercise: insert

» write the function insert() that inserts a given name and tel
number in a given list

— in the right place 2 remember they are sorted

— iterative version
— recursive version

* hint : think of using the Push function, with the appropriate
parameters

Exercise: numberOf

e write a function numberOf() that returns the telephone
number of a given name

— of the first occurrence

Exercise: displayAll

* write a recursive function displayAll() that displays all the
contacts having a given name

Exercise: occurrence

* write the function occurrence() that returns the number of
times a given name occurs in a given list

— iterative version

— recursive version

Linked List Exercises

2. Linked List of Integers

Dr Siba HAIDAR - Lebanese University - 12204

Important

* |In the following, we will use the following declaration:

typedef struct node{
int data;

struct node* next;
} node;

Exercise: count

typedef struct node{int data; struct node* next;} node;

e write the function count (iterative & recursive)

— returns the number of nodes in a list

void countTest(){
node* head=buildList();
printf("%d", count(head)); /17

Exercise: printList

typedef struct node{int data; struct node* next;} node;

* write the function printList (iterative & recursive)
— prints on the screen the values in data field of nodes

* example
void printListTest(){
node* head=buildList();
printList(head); // 1,3,5,6,3,8,9

Exercise: printRList

* Write a function named printRList that prints the list elements
in reverse order.

void printRList Test(){
node* head=buildList();
printRList(head); // 9,8,3,6,5,3,1

Exercise: averagelist

* Write a function named averagelist that prints the average of
nodes in the list.

void averagelistTest(){
node* head=buildList();
printf("%1f",averageList(head)); // 5.0

Exercise: isSortedList

 Write a function named isSortedList that checks whether the
nodes in a list are sorted in ascending order.

void isSortedListTest(){
node* head=buildList(),*head2=buildListSorted();
printf("%d",isSortedList(head)); // ©
printf("%d",isSortedList(head2)); // 1

Exercise: incList

* Write a function named incList that adds a number passed as a
parameter to each element of a given list.

void inclListTest(){
node* head=buildList();
addNumberToList(head,2);
printList(head); // 3,5,7,8,5,10,11

Exercise: isRepeatedInlList

* Write a function named “isRepeatedInList ” that checks
whether a number is repeated in the list.

void isRepeatedInListTest(){
node* head=buildList();
printf("%d", isRepeatedinList(head,3)); // 1
printf("%d", isRepeatedinList(head,8)); // ©
printf("%d", isRepeatedinList(head,4)); // ©

Exercise: swaplnList

* Write a function named “swaplnList ¥ that swaps the contents
of 2 nodes (of index 1 and j) in the list

void swaplnListTest(){
node* head = buildList();
swaplnList(&head,1,3); // swaping 3 by 6
printList(head); // 1,6,5,3,3,8,9

Exercise: removeFromlList

e Write the function removeFromList which removes from a given list,
the nodes having the given value.

— iterative
— recursive

void removeFromListTest(){
node* head=build123();

removeFromList(&head,1);
printList(head);

}

Exercise: insertNthList

e Write the function insertNthList which inserts in a given list, a given
value, at a given index.

— iterative
— recursive

void insertNthListTest(){
node* head=build123();

insertNthList(&head,1, 2);
printList(head);

}

Exercise: PushToEnd

e Write the function insertNthList which inserts in a given list, a given
value, at a given index.

— iterative
— recursive

void PushToEndTest(){
node* head=build123();

PushToEnd(&head,4);
printList(head);

}

List Application

Write a complete Linked List
Application with a menu.

in a while(1) loop calls

— menu() = see next slide
— scanf()
* if 0 exit from loop

* if nb between1and 8
— call the “call” function = see next slides

e function to print menu:

Enter your choice,

1- create a empty list of integers

2- display your list

3- add one node to the head of your list
4- add one node to the tail of your list

5- delete one node containing the value v

6- delete all the nodes containing the
value v

7- free the list
8- insert a value at given index (insertNth)
Etc

Example to a call function

suppose the user enters the choice 8
insert a value at given index
the function insertCall() will be called:

void insertCall(node ** headRef){

int value, index;

//read v from keyboard..

printf(“please enter the value and the index”);
scanf (“%d %d”, &value, &index);

//call add to insertNth

insertNth (headRef, index, value);

Linked List Exercises

3. Linked List of Students

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: major

typedef struct Student{char name[20]; int id, grades[6];}std;
typedef struct node{std data; struct node* next;}node;

* write a function major which
— given a list of students in a class
— return a pointer to the major of the class
— the major is the student with highest average

Linked List Exercises

4. Linked List of Bank Accounts

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: transfer

typedef struct node{
char name[20];
int id;
double balance;
struct node* next;
tnode;

e write a function transfer which
— given a list of bank accounts, and
— two account number, and
— an amount

— transfers the given amount fro the balance of the sender (id=from)
to the receiver (id=to)

Linked List Exercises

5. Polynomials: Linked List of Terms

Dr Siba HAIDAR - Lebanese University - 12204

* we use linked lists to represent polynomials

Polynomial

* each node in the list corresponds to a term cx®, with its

coefficient c and its exponent e

head

10x3 +5x*+3x+5

10

I)

I)

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: term

* define the data type term containing the following fields
—coef
—exp

i EX

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: PushTerm

e write the function Push()

— that creates and adds a new term to the head of a given list, term
data are given as arguments

— this is the classic void Push we studied in the course that takes
double pointer (headRef)

e write PushTest()
— construct the polynomial 10x3 + 5x% + 3x + 5

— hint : put all the coefs in an array and all the corresponding exps in
another array both of size 4, then loop and Push one node at a time

Exercise: printPolynomial

e write the recursive function printPolynomial()

— that prints a given polynomial on the screen
—example : [10x3 + 5x% + 3x + 5]

e write printPolynomialTest()

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: addPolynomials

* write the function addPolynomials()
— that sums 2 given polynomials and returns the result
— the result will be a 3™ polynomial allocated in heap
e write the function addPolynomialsTest()
— create 2 polynomials (recall PushTest)
— print them
— add them

— print the resulting polynomial
[10x3 + 5x%2 + 3x + 5] + [3x3 — 7x% 4+ 3x — 6]=[13x3 — 2x% + 6x — 1]

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: addPolynomials2

For advanced students

Repeat the lab taking into account terms having zero coefficients 0x°

Zero coefficient terms must not be present (allocated)
10x” + 5x* + 3x*+5

head | =1 10 | 7| 5|4 | {3]2 | 5|0]

Rethink the addPolynomials2()

— the sum of 2 terms of nonzero coefficients may lead to zero; 5x% — 5x% = 0

— there may be nonzero terms in first polynomial and zero terms in the second
and vice-versa;

[10x7 + 5x* + 3x% + 5] +[3x% + 3x* + 3x — 6] = [3x% + 10x7 + 8x* +

3x% 4+ 3x — 1]

Dr Siba HAIDAR - Lebanese University - 12204

Linked List Exercises

6. Doubly Linked List

Dr Siba HAIDAR - Lebanese University - 12204

Doubly Linked Lists

* Consider the following data type:
typedef struct node{

int d;

struct node xnext, xprev;
} node;

Exercise: reverse

 Write a function "reverse" which reverses the order of the
nodes in a given doubly linked list of integers.

* For example,
— the list
* [329 =5=1]
— becomes after the call to reverse
¢ [1= 5292 3]

Exercise: merge

* Write a function "merge" which

— merges two sorted doubly linked lists of integers into one.

— The merged list must remain sorted.

— No Node allocation or deletion is allowed.

— Only one iteration is allowed for each list.

— The function must return the head of the resulting merged list.

Exercise: clean

e Write the function "clean" which,

— given a doubly linked list of integers, not sorted,
— finds and deletes all the duplicates from the list.

* For example,
— the list
* [1=25= 9= 52 1=23=3=21=1]
— becomes after the call to clean
e [1=5=9=3].

Linked List Exercises

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - 12204

AM-STRAM-GRAM

* To play the AM-STRAM-GRAM game,

— N children form a circle,
— choose a child to be the first,
— start counting from this child till the kt" child who leaves the circle,

— then we continue counting from current child till the next k" child
who will leave the circle,

— and so on until no child is left in the circle.

Exercise: struct child

* We suppose that a child is represented by an integer number
* Define the adequate data structure

list of children

* We represent the circle of children by a circular list

L: —Smml el Hom 2| = em 3| e v Hem N D

— the last node points to the first one instead of pointing to NULL

* so to iterate down the list
— the condition while(current!=NULL) is not valide anymore!!!
— what is the new condition??

Dr Siba HAIDAR - Lebanese University - 12204

Exercise: play

Write a function that displays the set of children in the order of their
removal from the circle.
Each time a child must leave the circle,
— its node must be freed and
— the linking must be maintained
* the node before must points to the node after
* unless we remove the last node in list
* pay attention when you remove the first node (head value changes)
The function inputs are
— the list
— the number k

Example: for k = 3 and the following list :

Example: for k = 3 and the following list

1 2 3 4

Exit of 3

o

4 S

Exit of 6

1 2 4

Exit of 4

1 2 S

Exit of 2

1)

Exit of S
1
Exit of 1

Dr Siba HAIDAR - Lebanese University - 12204

