

I2204	E	–	INFO216	E		
Imperative	Programming	 Final	2019-2020	

	Wed.	Feb.	12th	am	
Duration:	2	hours	

Page 1 / 2

Exercise I: Swapping Nodes in a DLL (25 pts)
Write	the	function	swap	which,	given	a	doubly	 linked	 list	 (DLL)	and	two	 integer	 indices,	swaps	the	nodes	at	 those	
indices.	The	 function	 should	 swap	 the	nodes	and	not	 the	data	contained	 in	 the	nodes	because	 the	nodes	may	be	
pointed	to	by	other	pointers.	Therefore,	we	want	to	manipulate	the	pointers	in	the	linked	list	in	order	to	rearrange	
the	nodes.	In	case	the	given	indices	were	out	of	bound,	no	swap	should	occur.	Moreover,	care	should	be	taken,	when	
given	 indices	 are	 consecutive	numbers,	 in	 order	 not	 to	make	 loops	 inside	 the	DLL.	We	give	below	an	example	of	
application	of	the	swap	function.	We	recall	the	type:	

typedef struct node{	
 int data;
 struct node *prev, *next;
}node;

Example of application:

List: 10 ⇌ 11 ⇌ 12 ⇌ 13 ⇌ 14
//swap(&head, 2, 1);
List: 10 ⇌ 12 ⇌ 11 ⇌ 13 ⇌ 14
//swap(&head, 0, 3);
List: 13 ⇌ 12 ⇌ 11 ⇌ 10 ⇌ 14

	
Exercise II: Hashtables (25 pts = 10 +15)
Arrays,	by	opposition	to	linked	lists,	have	the	advantage	of	the	quick	access	to	the	elements	and	the	disadvantage	of	
the	 expensive	 structure	 alteration	 (insert	 and	 delete	 operations).	 Hashtables	 take	 the	 best	 from	 each	 world.	
Hashtables	are	arrays	of	linked	lists	called	buckets.	Below	is	an	example	of	a	hash	table,	and	the	data	types	used.	
	

	

#define size 5

typedef struct element{ //...
} element;

typedef struct node{
 element data;
 struct node *next;
} node;

typedef struct hashtable{
 node* array[size];
} hashtable;

	

a	hashtable	 used data types

1- Write	the	avgBucketLen	function	which	calculates	the	average	number	of	elements	in	the	non-empty	buckets	
of	the	hash	table.	Example:	considering	the	hash	table	in	the	figure	above;	we	have	five	buckets,	two	of	which	
are	non-empty	containing	nine	elements	in	total,	hence	the	average	bucket	length	is	4.5.	

	

In	order	to	add	a	given	element	to	a	hashtable,	first	calculate	the	element's	hash	code	by	calling	the	hash()	function.	
Then,	calculate	the	code	modulo	the	array	size	to	obtain	an	entry	index.	Finally	push	the	element	at	the	head	of	the	
linked	list	located	at	that	index.		

int hash(element elt);	

2- Suppose	already	defined	the	function	hash().	Write	the	function	add	which	adds	a	given	element	in	a	given	
hashtable	as	described.	

Page 2 / 2

Exercise III: File & String Manipulation (20 pts)
A	simple	way	to	store	an	address	book	or	telephone	directory	is	in	a	text	file	with	one	line	per	entry.	We	have	a	file	
containing	a	collection	of	names,	offices,	and	phone	numbers.	Here	are	a	few	sample	lines	from	the	file	testfile.txt.	
	

testfile.txt
Ima EE Professor#EE B 735#3-1415
Fearless Leader#EE1 116#3-6515
E. Fudd#EEGAD 548#2-4784
B. Bunny#EE 037#254-5512
	

Each	 line	contains	 the	name	of	an	 individual,	 the	office	 location	 (building	and	room	number),	and	phone	number.	
There	is	a	single	hash	(#)	character	between	consecutive	fields.		
For	some	reason,	the	EE	building	has	been	denoted	in	several	ways	over	the	years:	'EE',	'EE	B'	(with	one	space	between	
'EE'	and	'B'),	'EE1',	'EE	1'	(with	a	space),	and	'EEB'.	We	would	like	to	produce	a	clean	copy	of	this	file	by	replacing	the	
five	names	of	the	EE	building	with	'EEB'.	For	example,	when	run	on	the	above	input,	the	output	shoud	should	be	the	
following:		
	

standard output
Ima EE Professor#EEB 735#3-1415
Fearless Leader#EEB 116#3-6515
E. Fudd#EEGAD 548#2-4784
B. Bunny#EEB 037#254-5512

For	this	problem,	write	in	C	the	function	normalize	which,	given	the	name	of	a	file	in	the	described	format,	copies	its	
content	to	the	standard	output,	changing	all	references	to	the	EE	building	to	'EEB'	as	described	above.	Otherwise,	the	
function	must	not	modify	the	content.		
You	may	assume	the	data	is	clean:	each	line	contains	exactly	three	fields	separated	by	'#'	characters,	there	are	no	extra	
spaces	before	or	after	each	'#'	character,	there	is	one	space	between	the	building	name	and	room	number,	and	so	
forth.	
	

Good Luck!
	

