

I2204	E	–	INFO216	E		
Imperative	Programming	

Partial	2017-2018	
	Tue.	Nov.	21th	pm	
Duration:	1	hour	

Page 1 / 2

 Exercise I: Mysterious enigma (6 points)

Draw	the	memory	state	tracing	the	following	program.	Deduce	the	output.	

#include <stdio.h>
int enigma(int n1, int n2) {
 if (n1 == 0) return 0;
 return n2 + enigma(n1 - 1, n2);
}
int mystery(int n) {
 if (n == 0) return 1;
 return enigma(2, mystery(n - 1));
}
void mysteryTest(){
 printf("%d",mystery(2));
}
void main(){
 mysteryTest();
}

Exercise II: Recursive raising to the power (6 points)

It	is	easy	to	implement	an	iterative	function	"raiseIntToPower"	that	computes	n	raised	to	the	kth	power,	n	and	k	
a	positive	intergers.	

#include <stdio.h>
void raiseIntToPowerTest();
int raiseIntToPower(int n, int k)
{
 int result = 1;
 for (int i = 0; i < k; i++)
 result *= n;
 return result;
}
void main(){
 raiseIntToPowerTest();
}

void raiseIntToPowerTest(){
 printf("%d\n",raiseIntToPower(3,1));//3
 printf("%d\n",raiseIntToPower(3,4));//81
 printf("%d\n",raiseIntToPower(3,3));//27
 printf("%d\n",raiseIntToPower(-3,5));//-243
 printf("%d\n",raiseIntToPower(0,4));//0
 printf("%d\n",raiseIntToPower(0,0));//1
 printf("%d\n",raiseIntToPower(5,0));//1
}

	
Rewrite	this	function	so	that	it	operates	recursively,	taking	advantage	of	the	following	insight:	
- If	k	is	even,	nk	is	the	square	of	n	raised	to	the	power	k	/	2.	
- If	k	is	odd,	nk	is	the	square	of	n	raised	to	the	power	k	/	2	times	n.	

	
In	solving	this	problem,	you	need	to	identify	the	simple	cases	necessary	to	complete	the	recursive	definition.	You	
must	also	make	sure	that	your	code	is	efficient	in	the	sense	that	it	makes	only	one	recursive	call	per	level	of	the	
recursive	decomposition.	In	your	code	you	can	declare	no	local	variables	of	any	type,	you	only	use	the	parameters.	
	

Page 2 of 2

Exercise III: Dominos linked list (10 points)

The	game	of	dominos	is	played	with	rectangular	pieces	composed	of	two	connected	squares,	each	of	which	is	marked	
with	a	certain	number	of	dots.	For	example,	each	of	the	following	five	rectangles	represents	a	domino:	

	
Dominos	 can	 be	 connected	 end-to-end	 to	 form	 chains,	 subject	 to	 the	 condition	 that	 two	 dominos	 can	 be	 linked	
together	only	 if	 the	numbers	match.	For	example,	you	can	 form	a	chain	consisting	of	all	 five	of	 these	dominos	by	
connecting	them	in	the	following	order	(notice	we	rotated	some	pieces):	

	

1. Define	the	type	node,	representing	a	domino	in	a	list,	having	two	interger	fields	left	and	right	and	one	next	
field.	

2. Write	the	function	rotate180	which	given	a	node,	rotates	the	domino	it	represents		180	degrees,	i.e.	switches	
the	left	and	right	values.	

3. Write	the	function	"formsDominoChain"	which	given	a	domino	 list	returns	1	 if	 the	nodes	 in	the	 list	 form	a	
domino	chain,	0	else.	The	function	may	rotate	nodes	to	make	them	fit	in	the	chain.		

