

I2204	E	–	INFO216	E		
Imperative	Programming	

Final	2017-2018	
	Thu.	Feb.	1st	pm	
Duration:	2	hours	

Page 1 / 2

 Exercise I: Lab Question (25 points)

Consider	 the	 Polynomial	 lab	 session.	 Write	 the	 function	multiply,	 which	 given	 two	 polynomials,	 returns	 a	 third	
polynomial	 representing	 their	multiplication.	You	 should	use	 the	exact	data	 types	used	 in	 lab.	All	polynomials	are	
sorted	according	to	the	decreasing	oder	of	the	exponents.	Check	figure	1	to	recall	polynomial	multiplication.	
	

𝑥" + 3𝑥% + 4𝑥 + 2𝑥% + 6𝑥 + 8
= 𝑥" + 5𝑥% + 10𝑥 + 8

Figure 1

	
	

Exercise II: Two Big Binary Numbers Addition (25 points)

Write	a	function	add	which,	given	two	text	file	names,	where	each	file	contains	a	huge	binary	number,	represented	as	
a	series	of	'0'	and	'1'	characters,	adds	the	binary	numbers	and	writes	the	result	in	a	third	text	file	whose	name	is	the	
concatenation	of	both	file	names,	separated	by	the	word	ADD.	For	example,	if	the	file	"file1.txt"	contains	1101	and	
the	file	"file2.txt"	contains	1111,	then	after	calling	the	function	add	over	the	two	file	names,	we	should	obtain	the	file	
"file1ADDfile2.txt"	containing	11100.	

	

Figure 2

Page 2 of 2

Exercise III: Flattening a Linked List (28 points)

Given	a	linked	list	where	every	node	represents	a	linked	list	and	contains	three	pointers	of	its	type.		
	

typedef struct node{
 int data;
 struct node *next, *upEven, *downOdd;
} node;

	
The	main	list	nodes	:	

- their	data	values	are	rounded	decimals	to	tenth,	
- their	upEven	field	points	to	the	even	values	list	belonging	to	the	same	range	of	tenth,	and	
- the	downOdd	field	points	to	the	odd	values	list	belonging	to	the	same	range	of	tenth.		

The	nodes	in	the	even	lists	have	always	their	next	and	downOdd	fileds	set	to	NULL.	Similarly,	the	nodes	in	the	odd	lists	
have	always	their	next	and	upEven	fileds	set	to	NULL.	All	linked	lists	are	sorted.		
	
See	the	example	in	figure	3.a.	
	

	 	 8	 	 	 	 	 	 	
	 	 á	 	 	 	 	 	 	
	 	 2	 	 14	 	 	 	 	
	 	 á	 	 á	 	 	 	 	

head	 à	 0	 à	 10	 à	 20	 à	 40	
	 	 â	 	 â	 	 â	 	 â	
	 	 3	 	 15	 	 27	 	 41	
	 	 â	 	 	 	 â	 	 â	
	 	 7	 	 	 	 29	 	 45	
	 	 â	 	 	 	 	 	 â	
	 	 9	 	 	 	 	 	 49	

	

	 	 8	 	 	 	 	 	 	 	 	
	 	 á	 	 	 	 	 	 	 	 	
	 	 2	 	 14	 	 	 	 	 	 	
	 	 á	 	 á	 	 	 	 	 	 	

head	 à	 0	 à	 10	 à	 20	 à	 30	 à	 40	
	 	 â	 	 â	 	 â	 	 â â	
	 	 3	 	 15	 	 27	 	 35	 	 41	
	 	 â	 	 	 	 â	 	 â	
	 	 7	 	 	 	 29	 	 	 	 45	
	 	 â	 	 	 	 	 	 â	
	 	 9	 	 	 	 	 	 	 	 49	

	

Figure 3.a	 Figure 3.b	

	

1. Write	the	function	put	which	takes	an	integer	and	pushes	it	to	its	correct	place	in	this	data	structure.	Note	
that,	if	the	node	representing	the	rounded	decimal	to	the	tenth	of	the	given	integer	is	missing,	the	function	
should	first	add	the	rounded	decimal	to	the	structure,	then	add	the	node	corresponding	to	the	given	integer.	
Example,	if	we	put	35	into	the	list	in	figure	3.a,	we	obtain	the	list	in	figure	3.b.	

	

2. Write	the	function	flatten	which	flattens	the	data	structure	 into	a	sorted	 linked	 list.	The	provided	solution	
should	not	use	any	dynamic	allocation	or	deallocation.	Moreover,	while	flattening,	each	node	should	be	visited	
only	once.	For	example,	for	the	above	input	list	in	figure	3.a,	output	list	should	be:		

0à2à3à7à8à9à10à14à15à20à27à29à40à41à45à49

	

	

