

I2204	E	–	INFO216	E		
Imperative	Programming	 Sessssion	2	2016-2017	

	Sat.	July.	15th	am	
Duration:	2	hours

Page 1 of 2

Exercise I [30 min, 25 points]
	
Here	 is	 a	 small	 program	 that	 has	 some	 problems	 (6	 to	 be	 exact).	 You	 should	 find	 all	 the	 bugs	 and	 give	 a	 brief	
explanation	of	each	problem.	You	are	not	 required	 to	 fix	 the	bugs	 (and	 there	might	not	be	obvious	 fixes	 in	 some	
cases),	but	sometimes	an	easy	way	to	explain	a	bug	is	to	show	how	to	correct	it.		
	
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <stdio.h>
#include <stdlib.h>
typedef struct point {
 int x, y, z;
} Point, *PointPtr;
PointPtr add(PointPtr a, PointPtr b) {
 Point res;
 res.x = a->x + b->x;
 res.y = a->y + b->y;
 res.z = a->z + b->z;
 return &res;
}
int main(int argc, char* argv[]) {
 Point a = {1, 2, 3};
 PointPtr b;
 b->x = 3;
 b->y = 5;
 b->z = 7;
 PointPtr c = malloc(sizeof(PointPtr));
 c = add(&a, b);
 printf("a = (%d, %d, %d)\n", a.x, a.y, a.z);
 printf("b = (%d, %d, %d)\n", b->x, b->y, b->z);
 printf("a + b = (%d, %d, %d)\n", c->x, c->y, c->z);
 free(b);
 free(c);
}	

To	answer,	copy	and	fill	the	following	table:	

bug	no	 line	number	 bug	 explanation	
1	 	 	 	
2	 	 	 	
3	 	 	 	
4	 	 	 	
5	 	 	 	
6	 	 	 	

Exercise II [30 min, 25 points]
Consider	the	following	data	type:		

typedef struct node{int d; struct node *next, *prev;} node;

Write a	 function	 "reverse"	 which	 reverses	 the	 order	 of	 the	 nodes	 in	 a	 given	 doubly	 linked	 list	 of	 integers.	 	 For	
example,	the	list	[3⇌9	⇌5⇌1]	becomes	after	the	call	to	reverse	[1⇌	5⇌	9⇌	3].	

Page 2 of 2

Exercise III [60 min, 45 points]
	
We	want	to	create	an	index	for	a	given	text.	We	will	do	it	step	by	step,	following	questions	1	to	5.	First	we	write	a	
function	 "createArrayofLL"	 that	 takes	 as	 a	 parameter	 a	 text	 file	 name,	 creates	 and	 returns	 an	 array	 of	 26	 sorted	
linked	lists,	one	for	each	alphabet	letter.	The	function	should	read	the	text	file	and	insert	each	word	into	one	of	the	
lists	based	on	 its	 first	 letter,	eg:	any	word	that	begins	with	 'a'	goes,	sorted,	 to	 the	 linked	 list	at	 the	entry	0	of	 the	
array.	Second,	we	will	write	the	function	"writeIndex"	which	uses	the	dynamically	constructed	index	to	write	a	new	
text	file	containing	the	index.			
	
Note	that	there	will	be	no	duplicates	in	the	lists,	and	that	the	comparison	should	be	case	insensitive.	Also	note	that	
the	punctuations	and	the	quotes	at	the	beginning	end	of	the	words	should	not	be	accounted.	
	
1. Define	the	appropriate	structure	"node"	to	hold	a	word	and	a	"next"	field.	
2. Write	the	function	"createArray26"	which	allocates	in	the	heap	an	array	of	26	pointers	to	node,	initializes	them	

to	NUL	and	returns	the	array	address.	
3. Write	the	function	"insertSorted"	that	 insert	a	given	word	to	 its	right	place	 in	a	given	 linked	 list.	The	function	

should	do	nothing	if	the	word	already	exists	in	the	list.	The	comparison	should	be	case	insentisitive.	
4. Using	the	functions	in	questions	2	and	3,	write	the	function	"createArrayofLL".		Example	:	if	given	the	file	name	

"in.txt"	in	fig.	1	below,	the	function	should	construct	and	fill	the	index,	fig.2,	in	the	heap,	then	return	it.		
5. Write	 the	 function	 "writeIndex"	which	 given	 an	 index	 copies	 its	 content	 (words)	 into	 a	 text	 file.	 Each	 set	 of	

words	corresponding	to	a	letter	are	on	one	line,	dash	separated,	the	line	begins	by	the	index	letter	followed	by	
two	 vertical	 points	 (:).	 As	 an	 example,	 if	 given	 the	 index	 in	 fig.2,	 the	 function	 creates	 and	 fills	 the	 text	 file	
"out.txt"	in	fig.	3.	As	one	can	note,	the	letters	corresponding	to	empty	linked	lists	are	skipped.		

in.txt	

	
	

index	

	
	

out.txt		

	

fig.	1	 fig.	2	 fig.	3	
	

