Background Photo: Opera Garnier Ceiling

# MULTIMEDIA

#### Dr Siba HAIDAR • INFO430 • 2019-2020 Textbook: Fundamentals of Multimedia • Z.-N. Li et al.

#### Course Outline



# Fundamentals of Multimedia

D Springer

Second Edition

- 1. Introduction to multimedia
- 2. Digital representation of graphics and images
- 3. Colors in images and video
- 4. Fundamental Concepts in Video
- 5. Lossless compression algorithms
- 6. Lossy compression algorithms (JPEG)
- 7. Video Coding (MPEG)
- 8. Introduction to Image Processing

Dr Siba HAIDAR • INFO430 • 2019-2020

Background Photo: The Starry Night

### FUNDAMENTAL CONCEPTS IN VIDEO

#### Dr Siba HAIDAR • INFO430 • 2019-2020

Textbook: Fundamentals o Multimedia • Z.-N. Li et al

3

### Chapter Outline

- Fundamental Concepts in Video
   chapter 5 in textbook
- 1. Analog Video
- 2. Digital Video
- 3. Video Display Interfaces
- 4. 3D Video and TV



### Analog Video

Dr Siba HAIDAR • INFO430 • 2019-2020

### Analog Video

#### up until last decade

most TV programs were sent and received as an analog signal

#### once the electrical signal is received

we may assume that brightness is at least a monotonic function of voltage, if not necessarily linear, because of gamma correction

progressive

- an analog signal f(t) samples a timevarying image
- progressive scanning traces
- through a complete picture (a frame)
- row-wise for each time interval





#### Interlacing

- trace lines all odd then all even
- $\square$  1 frame  $\rightarrow$  2 fields: odd & even
- □ tracing
  - $\square P \rightarrow Q$
  - $\square R \rightarrow S$ , etc., ending at T;
    - then
  - $\Box \cup \to ... \to \lor$
- horizontal retrace
  - jump from Q to R, etc electronic beam in CRT: blanked
- vertical retrace
  - jump from T to U or from V to P



Interlaced raster scan

#### Video raster including retrace and sync data

 vertical retrace and sync ideas are similar to horizontal one, except that they happen only once per field





#### interlacing was invented because

- when standards were being defined
- it was difficult to transmit the amount of information in a full frame quickly enough to avoid flicker

#### the double number of fields presented to the eye reduces perceived flicker



- because of interlacing
  - odd and even lines are displaced in time from each other
  - generally not noticeable except when very fast action is taking place on screen
  - blurring may occur
- example
  - moving helicopter is blurred more than still background

- (a) The video frame,
- (b) Field 1, (c) Field 2, (d) Difference of Fields





Textbook: Fundamentals of Multimedia • Z.-N. Li et al.

Dr Siba HAIDAR • INFO430 • 2019-2020

(b)

### De-Interlacing

#### de-interlace

sometimes necessary to change the frame rate, resize, or even produce stills from an interlaced source video

#### simplest de-interlacing method

discarding one field and duplicating the scan lines of the other fieldinformation in one field lost completely

other more complicated methods possible

#### What is Aspect Ratio?

#### □ the ratio of the width to the height of an image or screen





Dr Siba HAIDAR • INFO430 • 2019-2020

#### NTSC Video

- National Television System Committee
- TV standard mostly used in North America and Japan
  - 4:3 aspect ratio
  - **525** scan lines per frame
  - 30 frames per second (fps)
    - in fact 29.97 fps = 33.37ms per frame
- interlaced scanning system
  - each frame divided into 2 fields
  - 262.5 lines/field
  - horizontal sweep frequency 525×29.97 ≈ 15734 lines /sec
  - each line swept out in  $\frac{1}{15.734} \times 10^6 \approx 63.6 \mu sec$
  - horizontal retrace 10.9 µsec
  - $63.6 10.9 = 52.7 \mu sec \rightarrow$  active line signal during which image data is displayed

- analog signal with no fixed horizontal resolution
- different video formats provide different numbers of samples per line
- samples per line for various video formats

| Format       | Samples per line |
|--------------|------------------|
| VHS          | 240              |
| S-VHS        | 400-425          |
| Betamax      | 500              |
| Standard 8 m | 300              |
| Hi-8 mm      | 425              |



NTSC video has 525 lines per frame and 63.6µs per line, with 20 lines per field of vertical retrace and 10.9µs horizontal retrace.

- □ (a) Where does the 63.6µs come from?
- (b) Which takes more time, horizontal retrace or vertical retrace? How much more time?

#### PAL Video

- Phase Alternating Line
- TV standard widely used in Western Europe, China, India, and many other parts of the world
- 625 scan lines per frame
- 25 fps
- 4:3 aspect ratio
- interlaced fields
- YUV color model

- 8 MHz channel
- allocates a bandwidth of
  - **5.5** MHz to Y
  - 1.8 MHz each to U and V
    - why less? chroma subsampling
- chroma signals have <u>alternate</u> signs (+U -U) in successive scan lines
- facilitates use of a (line rate) comb filter at receiver
  - signals in consecutive lines averaged
  - cancel opposite chroma signals
  - for separating Y & C → high quality Y signals

#### SECAM Video

- Système Electronique Couleur Avec Mémoire
- 3rd major broadcast TV standard
- 625 scan lines per frame
- □ 25 fps
- 4:3 aspect ratio
- interlaced fields

SECAM & PAL very similar

differ in color coding scheme

SECAM

- → U and V signals are modulated using separate color subcarriers at 4.25 MHz and 4.41 MHz respectively
- sent in alternate lines
- only one of U or V signals will be sent on each scan line

### Comparison of Analog Broadcast TV Systems

| TV System  | Frame # of<br>Rate Scan | Total<br>Channel | Bandwidth Allocation (MHz) |     |        |        |
|------------|-------------------------|------------------|----------------------------|-----|--------|--------|
| i v System | (fps)                   | Lines            | Width<br>(MHz)             | Y   | l or U | Q or V |
| NTSC       | 29.97                   | 525              | 6.0                        | 4.2 | 1.6    | 0.6    |
| PAL        | 25                      | 625              | 8.0                        | 5.5 | 1.8    | 1.8    |
| SECAM      | 25                      | 625              | 8.0                        | 6.0 | 2.0    | 2.0    |



### Digital Video

18

Dr Siba HAIDAR • INFO430 • 2019-2020



#### advantages of digital representation:

- video can be stored on digital devices or in memory, ready to be processed (noise removal, cut and paste, etc.), and integrated to various multimedia applications
- direct access is possible, which makes nonlinear video editing achievable as a simple, rather than a complex, task
- repeated recording does not degrade image quality
- ease of encryption and better tolerance to channel noise

### Chroma Subsampling

since humans see color with much less spatial resolution than they see black and white

- **i** it makes sense to "decimate" the chrominance signal
- interesting (but not necessarily informative!) names have arisen to label the different schemes used
- numbers are given stating how many pixel values, per 4 original pixels, are actually sent:

### Chroma Subsampling

- 4:4:4 no chroma subsampling
  each Y Cb Cr transmitted
- 4:2:2 horiz. subsampling of Cb Cr by 2
- 4:1:1 subsamples horizontally by 4
- 4:2:0 subsamples in both dimensions horizontal & vertical by 2
  - theoretically, an average chroma pixel is positioned between rows & columns
  - commonly used in JPEG and MPEG



Multimedia • Z.-N. Li et al.

#### ITU-R digital video specifications

- CIF = Common Intermediate Format by
  - CCITT = International Telegraph and Telephone Consultative Committee, now superseded by
  - ITU = International Telecommunication Union for both telecommunications (ITU-T) and radio frequency matters (ITU-R) under one United Nations body
- idea of CIF, VHS quality: format for lower bitrate, progressive (noninterlaced) scan
- QCIF = Quarter-CIF, and is for even lower bitrate
- CIF/QCIF resolutions are evenly divisible by 8, and all except 88 are divisible by 16; convenient for block-based video coding in H.261 and H.263

|                        | Rec. 601 525/60<br>NTSC | Rec. 601 625/50<br>PAL/SECAM | CIF              | QCIF             |
|------------------------|-------------------------|------------------------------|------------------|------------------|
| Luminance resolution   | $720 \times 480$        | 720 × 576                    | 352 × 288        | $176 \times 144$ |
| Chrominance resolution | $360 \times 480$        | 360 × 576                    | $176 \times 144$ | $88 \times 72$   |
| Color subsampling      | 4:2:2                   | 4:2:2                        | 4:2:0            | 4:2:0            |
| Aspect ratio           | 4:3                     | 4:3                          | 4:3              | 4:3              |
| Fields/sec             | 60                      | 50                           | 30               | 30               |
| Interlaced             | Yes                     | Yes                          | No               | No               |

Dr Siba HAIDAR • INFO430 • 2019-2020

#### HDTV

#### High Definition TV

- main thrust is not to increase the "definition" in each unit area, but to increase the visual field especially in its width
  - first generation of HDTV was based on an analog technology developed by Sony and NHK in Japan in the late 1970s
  - MUSE (MUltiple sub-Nyquist Sampling Encoding) was an improved NHK HDTV with hybrid analog/digital technologies that was put in use in the 1990s
    - 1,125 scan lines, interlaced (60 fields per second), and 16:9 aspect ratio
- uncompressed HDTV demand > 20 MHz bandwidth
  - will not fit in current 6 MHz or 8 MHz channels
  - various compression techniques being investigated
  - HDTV signals will be transmitted using more than one channel even after compression

- □ for video, MPEG-2 is chosen as the compression standard
- □ for audio, AC-3 is the standard
  - supports the so-called 5.1 channel Dolby surround sound, i.e., five surround channels plus a subwoofer channel
- salient difference between conventional TV and HDTV:
  - HDTV has a much wider aspect ratio of 16:9 instead of 4:3
  - HDTV moves toward progressive (non-interlaced) scan
  - interlacing introduces serrated edges to moving objects and flickers along horizontal edges

#### Standards for Video

| (                         | CCIR -<br>CIF -<br>QCIF - | Consultative Committee for International Radio<br>Common Intermediate Format (approximately VHS quality)<br>Quarter CIF |                 |           |           |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-----------|
|                           | HDTV                      | CCIR 601<br>NTSC                                                                                                        | CCIR 601<br>PAL | CIF       | QCIF      |
| Luminance<br>Resolution   | 1920 x 1080               | 720 x 486                                                                                                               | 720 x 576       | 352 x 288 | 176 x 144 |
| Chrominance<br>Resolution | 960 x 540                 | 360 x 486                                                                                                               | 360 x 576       | 176 x 144 | 88 x 72   |
| Color<br>Subsampling      | 4:2:2                     | 4:2:2                                                                                                                   | 4:2:2           | 4:2:0     | 4:2:0     |
| Fields/sec                | 120                       | 60                                                                                                                      | 50              | 30        | 30        |
| Aspect Ratio              | 16:9                      | 4:3                                                                                                                     | 4:3             | 4:3       | 4:3       |
| Interlacing               | Yes                       | Yes                                                                                                                     | Yes             | No        | No        |
|                           |                           |                                                                                                                         |                 | 20        | Textbook: |

Textbook: Fundamentals of Multimedia • Z.-N. Li et al.

Dr Siba HAIDAR • INFO430 • 2019-2020

### Advanced Digital TV formats supported by ATSC

boom of proposals for digital HDTV

- "grand alliance" = General Instruments + MIT + Zenith + AT&T
  and by Thomson, Philips, Sarnoff, and others
- $\neg$   $\rightarrow$  ATSC = Advanced Television Systems Committee

| Number of active pixels per line | Number of active lines | Aspect ratio | Picture rate    |
|----------------------------------|------------------------|--------------|-----------------|
| 1,920                            | 1,080                  | 16:9         | 60P 60I 30P 24P |
| 1,280                            | 720                    | 16:9         | 60P 30P 24P     |
| 720                              | 480                    | 16:9 or 4:3  | 60P 60I 30P 24P |
| 640                              | 480                    | 4:3          | 60P 60I 30P 24P |

# Ultra High Definition TV (UHDTV)

- new generation of HDTV
- standards announced in 2012
- support
  - 4K UHDTV:
    - **2160P**
    - 3,840 ~ 2,160 progressive scan
  - **8K UHDTV:** 
    - **4**320P
    - 7,680 ~ 4,320 progressive scan
- aspect ratio 16:9
- bit-depth up to 12 bits
- chroma subsampling 4:2:0 | 4:2:2

- supported frame rate increased to 120 fps
- superior picture quality
  - comparable to IMAX movies
  - require higher bandwidth &| bitrate
- in 2013 ATSC called for proposals to support 4K UHDTV (2160P) at 60 fps

#### Definition



Dr Siba HAIDAR • INFO430 • 2019-2020



#### Video Display Interfaces

There have been a wide range of video display interfaces, supporting video signals of different formats (analog or digital, interlaced or progressive), different frame rates, and different resolutions.

Dr Siba HAIDAR • INFO430 • 2019-2020

### Analog Display Interfaces

# Connectors for typical analog display interfaces. Component video | Composite video | S-video | VGA



Dr Siba HAIDAR • INFO430 • 2019-2020

### Analog Display Interfaces

- Component Video
  - 3 separate video signals for RGB planes
  - best color reproduction
  - no "crosstalk"
  - requires bandwidth+ & synchro





#### Composite Video – 1 Signal

- chromix 2 & lumi
- mixed into 1 carrier wave
- $\bullet \rightarrow$  put chroma at high-freq
- separated at receiver end
- interference

#### S-Video – 2 Signals

- compromise 2 wires
- 🗖 lumi & chromi
- less crosstalk
- +crucial gray-scale information





### Video Graphics Array (VGA)

- IBM in 1987 with its PS/2 personal computers
- resolutions
  - initial
    - 640~480 using 15-pin D-subminiature
      VGA connector
  - then from
    - 640 ~ 400 pixels at 70Hz (24MHz of signal bandwidth)

🗖 to

 1, 280 ~ 1, 024 pixels (SXGA) at 85Hz (160MHz)

and up to

 2, 048 ~ 1, 536 (QXGA) at 85Hz (388MHz) signals based on analog component

- RGB HV
- red, green, blue, horizontal sync, vertical sync
- □ carries DDC
  - Display Data Channel
  - data defined by VESA
    - = Video Electronics Standards Association
- suffers from interferences when cable is long

### Digital Display Interfaces

- emerged in 1980s CGA = Color Graphics Adapter
- Digital Visual Interface (DVI), High-Definition Multimedia Interface (HDMI), and DisplayPort
- Connectors of different digital display interfaces
- DVI | HDMI | DisplayPort





Dr Siba HAIDAR • INFO430 • 2019-2020

# Digital Visual Interface (DVI)

#### □ by DDWG

- = Digital Display Working Group
- transfer digital video signals, from a computer's video card to a monitor
- uncompressed digital video
- support multiple modes
  - DVI-D (digital only)
  - DVI-A (analog only)
  - DVI-I (digital and analog)
- backward compatible with VGA

adapter needed

- transmission format is based on PanelLink
  - high-speed serial link technology

using TMDS

= transition minimized differential signaling

#### video card

- reads display's EDID
  - extended display identification data
- chooses preferred mode or native resolution
- single-link mode
  - max pixel clock frequency 165MHz
  - maximum res 2.75 megapixels at the 60Hz refresh rate
  - max 16:9 screen res 1,920 ~ 1,080 at 60 Hz
- 🗆 dual link
  - higher res
  - **2**,560 x 1,600 at 60 Hz

## High-Definition Multimedia Interface (HDMI)

- newer digital audio/video interface
- backward-compatible with DVI
- by the consumer electronics industry & widely used since 2002
- specification identical to those of DVI
- difference:
  - 1. no analog signal & VGA incompatible
  - **2**. color space
    - DVI limited to RGB color range (0-255);
    - HDMI supports both RGB and YCbCr 4:4:4 or 4:2:2
  - 3. supports digital audio

□ HDMI 1.0

- max pixel clock rate 165MHz
- support 1080P and WUXGA (1,920 ~ 1,200) at 60 Hz
- □ HDMI 1.3
  - to 340MHz
  - WQXGA, 2, 560~1, 600 over a single digital link
- □ HDMI 2.0
  - released in 2013
  - **4K** resolution at 60 fps

Dr Siba HAIDAR • INFO430 • 2019-2020

## DisplayPort

- by VESA 2006
- first display interface to use packetized data transmission, like the Internet or Ethernet
  - based on micro packets
  - can embed clock signal
  - higher res yet fewer pins
- extensible
  - new features can be added over time without significant changes to physical interface itself
- transmit audio & video | video | audio
  - video signal path: 6-16 bits per color channel
  - audio path: up to 8 channels of 24-bit 192kHz uncompressed PCM audio | compressed audio
  - dedicated bi-directional channel carries device management and control data

- to replace VGA and DVI higher video bandwidth
  - enough for
  - 4 simultaneous 1080P 60Hz displays, or
  - 4K video at 60 Hz
- backward compatibility to VGA and DVI by active adapters
- DisplayPort versus HDMI
  - more bandwidth
  - accommodates multiple streams of audio and video to separate devices
  - VESA specification is royalty-free; HDMI charges an annual fee to manufacturers
  - → DisplayPort >> HDMI



#### 3DVideo and TV

3D pictures & movies  $\rightarrow$  enable experience of immersion rapid progress in research & development of 3D technology + success of Avatar film 2009  $\rightarrow$  peak

! However, not in the frame of this course

Dr Siba HAIDAR • INFO430 • 2019-2020