Lebanese University
Faculty of Science
Computer Science BS Degree

Advanced Algorithms
13341

Dr Siba Haidar & Dr Antoun Yaacoub

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

Dr Siba Haidar & Dr Antoun Yaacoub

ek

Course
Chapters

as per the textbook

Introduction

Data Structures and Libraries
Problem Solving Paradigms
Graph

Mathematics

String Processing

Computational Geometry

X E
o =
O ®©
4—9]:
—
)
RIS
o2
8 7
)
-
= %
N =
[g
‘_|-|—3
]
S o
mn £
I e)
@)

Dr Siba Haidar & Dr Antoun

DO

Problem Solving Paradigms
Chapter 3

Competitive Prog. 3 by Dr Halim

13341 - 2019-2020 - Textbook:

ub

Dr Siba Haidar & Dr Antoun Yaaco

o

Chapter Outline

1. Complete Search = Brute Force
a. Iterative Complete Search
b. Recursive Complete Search

c. Tips

2. Divide and Conquer
a. Interesting Usages of Binary Search

3. Greedy

a. Examples

4. Dynamic Programming
a. DP lllustration
b. Classical Examples
c. Non-Classical Examples

X E
o =
O ®©
4-9]:
—
)
RIS
o2
8 7
)
-
= %
N =
[g
‘_|-l—’
]
S o
mn £
- o
@)

Dr Siba Haidar & Dr Antoun

S

wijeH g Aq € ‘3oud aA1dwo)
}00qIxal - 0¢0¢-6T0C - TVEEI

gnodeej Unojuy JQ g JepieH eqis J4q L)

Overview and
Motivation

Let us focus on Divide & Conquer

d 1. Find largest & smallest element
o =2 0(n) Complete Search

3 2. Find kth smallest element
o find smallest and replace with big number
o repeat k times
o ifk=n/2 > 0(nxn/2)~0(n?)
o better sort then choose kth = O(nlogn) - Divide and Conquer
o better O(n) -2 also Divide and Conquer

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

2 3. Find largestgapg/x,y €E A& g=|x-vVy|
o consider every pair = 0(n?)
o largest —smallest 2 0(n) = Greedy

d 4. Find longest increasing subsequence
o try all 0(2™) possible subsequences
o not feasible for all n £ 10K
o = 0(n?) DP
o =2 0(nlogn) Greedy

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

op)

wijeH g Aq € ‘3oud aA1dwo) _

nodeejA unoljuy J JepieH eqis J
50013 - 0202-6T0Z - TVEE] sfeeiel Seniy e g Lpledn] G IS e

de & Conquer

1V1

-

Introduction

 Based on recursion.

2 How it works ?

o Recursively break down a problem into two or more sub problems of the
same type, until they become simple enough to be solved directly.

o The solutions to the sub problems are then combined to give a solution to
the original problem.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Qo

Strategy?

dThe D & C strategy solves a problem by:

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

1. Divide: Breaking the problem into sub problems that are
themselves smaller instances of the same type of problem.

13341

2. Recursion: Recursively solving these sub problems.

3. Conquer: Appropriately combining their answers.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

N

Does Divide and Conquer Always Work?

aONO !

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

O For all problems it is not possible to find the subproblems which
are the same size and D & Cis not a choice for all problems.

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Visualization

d Assume that n is the size of the original problem.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

2 Divide the problem into b sub problems with each of size n/b (for
some constant b).

13341

d Solve the sub problems recursively and combine their solutions
to get the solution for the original problem.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

ek
pd

Visualization

DivideandConquer(P){
if(small(P))
// P is very small so that a solution is obvious
return solution(P);

Divide P into b subproblems: P;, P,, .. Py

return (
combine(
DivideandConquer(P,),
DivideandConquer(P,),
DivideandConquer(P,)
)
)

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Examples

d We have already solved many problems based on D & C strategy:
like Binary Search, Merge Sort, Quick Sort, etc....

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

d Looking for a name in a phone book: We have a phone book with
names in alphabetical order. Given a name, how do we find
whether that name is there in the phone book or not?

d Finding our car in a parking lot.

4.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

ek
o

Advantages of Divide and Conquer

A Solving difficult problems: D & Cis a powerful method for solving
difficult problems: Tower of Hanoi problem.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

d Parallelism: Since D & C allows us to solve the subproblems
independently.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Disadvantages of Divide and Conquer

- Recursion is slow.
Overhead of the repeated subproblem calls.
Stack for storing the calls.

d Sometimes more complicated than an iterative approach.
Example: add n numbers, a simple loop to add them up in
sequence is much easier than a D & C approach that breaks the
set of numbers into two halves, adds them recursively, and then
adds the sums.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

ek
Ot

Divide and Conquer Applications

d Binary Search

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

d Merge Sort and Quick Sort

13341

d Median Finding
d Min and Max Finding
d Matrix Multiplication

d Closest Pair problem

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Binary Search: The Ordinary Usage

d As the size of search space is halved (in a binary fashion) after
each check, the complexity of this algorithm is Oflog n).

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

d There are built-in library routines for this algorithm,

e.g.
othe C++ STLalgorithm: :lower bound /
algorithm: :upper_ bound

otheJava Collections.binarySearch

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

ek
-3

. . s £

° o ®©

Binary Search: The Ordinary Usage F

v 0O

=~

! O

Sm

S g

(o)) —

import java.util.List; P C;

import java.util.ArraylList; ﬁJ:E

import java.util.Collections; ;335

i o

#include <iostream> // std::cout ?Ubllc class GF6 8 g

tiz?}ﬂgse;aiiz:;chid..Séﬁtstd::lower_bound, public static void main(String[] args) =
#include <vector> // std::vector {

List al = new ArraylList();
al.add(10);
al.add(20);

int main () {
int myints[] = {10,20,30,30,20,10,10,20};
std::vector<int> v(myints,myints+8);

std::sort (v.begin(), v.end()); zi.:jjgggf
std::vector<int>::iterator low,up; al.add(B)f

low=std: :lower_bound (v.begin(), v.end(), 20);

up= std: :upper_bound (v.begin(), v.end(), 20); Collections.sort(al);

N int index = Collections.binarySearch(al, 10);

std::cout << "lower_bound at position System.out.println(index);

<< (low- v.begin()) << '\n';
std::cout << "upper_bound at position
<< (up - v.begin()) << '\n';

// 13 is not present. 13 would have been inserted

// at position 4. So the function returns (-4-1)

// which is -5.

index = Collections.binarySearch(al, 13);
System.out.println(index);

Output: y P ()

} Output:
3
-5

return 9;

o)
>
O
O
©
>
[
>
O
o+
e
<
—
()
o3
—
©
o
©
I
©
9
(%)
—
()

lower_bound at position 3 }
upper_bound at position 6

Bisection Method

d Find the root of a function that may be difficult to compute
directly.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0.6 N\
041 N
02 \

02 o\
04

06
08 |

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Bisection Method - Example

dYou buy a car with loan and now want to pay the loan in monthly
installments of d dollars for m months.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

d Suppose the value of the car is originally v dollars and the bank
charges an interest rate of i% for any unpaid loan at the end of
each month. What is the amount of money d that you must pay
per month (to 2 digits after the decimal point)?

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Bisection Method - Example

d Suppose d =576.19, m=2, v=1000, and i = 10%.
o After one month, your debt becomes 1000 x (1.1) - 576.19 = 523.81.
o After two months, your debt becomes 523.81 x (1.1) - 576.19 = 0.

Now let’s reverse the process:

d If we are only given m =2, v=1000, and i = 10%, how would we
determine that d =576.19?
In other words, find the root d such that the debt payment
function f(d,m, v, i) = 0.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

DO
ek

Bisection Method - Example

d Pick a reasonable range [a..b] as starting points.
For the bisection method to work, we must ensure that the function values
of the two extreme points in the initial Real range [a..b], i.e. f(a) and f(b)
have opposite signs

d Fix d within the range [a..b]
where a = 0.01 as we have to pay at least one cent and b = (1+i%) x v as the
earliest we can complete the payment is m = 1 if we pay exactly (1 +i%) x v
dollars after one month. In this example, b = (1+0.1) x 1000 = 1100.00
dollars.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Bisection Method

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0.01 1100.00 550.005 Undershoot by 54.9895

550.005 1100.00 825.0025 Overshoot by 522.50525 { d
550.005 825.0025 687.50375 Overshoot by 233.757875 { d
550.005 687.50375 618.754375 Overshoot by 89.384187 Vd
550.005 618.754375 5384.379688 Overshoot by 17.197344 {d
550.005 584.379688 567.192344 Undershoot by 18.896078 1 d
567.192344 584.379688 575.786016 Undershoot by 0.849366 1T d

After few iterations

576.190476 stop; error is now less than ¢ answer = 576.19

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

(1.1)*1000 — 550.005 = 549.995
(1.1)*549.995 — 550.005 = 54.9895

DO
o

Bisection Method

. b— . .
at requires 0, (lng (Ta))lteratlons to get an answer

1099.99
E

aIn this example, bisection method only takes log, (

o Using a small = 1e-9, this yields only = 40 iterations.
o Even if we use a smaller = 1e-15, we will still only need = 60 tries.
o Notice that the number of tries is small.

o The bisection method is much more efficient compared to exhaustively
evaluating each possible value of d =[0.01..1100.00]/e.

d Note: The bisection method can be written with a loop that tries
the values of d = 40 to 60 times using ‘binary search’ technique.

) tries.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Bisection Method

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

double 1lo = 0.01, hi = 1100.00, mid ;

for (int 1 = 0; 1 < 50; i++) { // log_2 ((1099.99 - 0.0) / 1le-9) ~= 40
mid = (lo + hi) / 2.0; // looping 50 times should be precise enough
if (f(mid)>0) low= mid;
else hi = mid;

}

return mid;

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

DO
Ot

- 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

13341

Segment Tree

Range Minimum Query (RMQ)
problem

ub

(@)
(@)
©
©
>
=
=
(@]
+—
C
<<
—
()
o3
—
©
=
M
I
©
=
w
—_
()

Segment Tree
Range Minimum Query (RMQ) problem

- Data structure which can efficiently answer dynamic range
gueries.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

d One such range query is the problem of finding the index of the
minimum element in an array within range [i..j].

d This is more commonly known as the Range Minimum Query
(RMQ) problem.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

DO
-3

Example

Array | Values [18 17 13 19 15 11 20
A Indices| 0O 1 2 3 4 5 6

- Given an array A of sizen =7,

0 RMQ(1, 3) = 2, as the index 2 contains the minimum element among
A[1], A[2], and A[3].

0 RMQ(3, 4) = 4, RMQ(0, 0) = 0, RMQ(0, 1) = 1, and RMQ(0, 6) = 5.

d There are several ways to implement the RMQ. One trivial algorithm is
to simply iterate the array from index j to j and report the index with
the minimum value, but this will run in O(n) time per query. When n is

large and there are many queries, such an algorithm may be infeasible.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

d Segment tree like binary heap using static implementation.
o We call the array st.

o Index 1 (skipping index 0) is the root and the left and right children of index
p are index 2 x p and (2 x p) + 1 respectively.

o The value of st[p] is the RMQ value of the segment associated with index p.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

. o
Implementation e
“

Sm

S 3

>) a

[0,31:=2 S o

4 5 r;_n' Ej—

5 E

8 \ E 10 11

0 The root of segment tree represents segment [0, n-1].

O For each segment [L, R] stored in index p where L =R, the segment will be
splitinto [L, (L+R)/2] and [(L+R)/2+1, R] in a left and right vertices.

d The left sub-segment and right sub-segment will be stored in index 2xp and
(2xp)+1 respectively.

O When L =R, itis clear that st[p] =L (or R). Otherwise, we will recursively
build the segment tree, comparing the minimum value of the left and the
right sub-segments and updating the st[p] of the segment.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

typedef vector<int> vi;
class SegmentTree {
private: vi st, A;
vector<int> vi;
int n;
int left (int p) { return p << 1; }
int right(int p) { return (p << 1) + 1; }
void build(int p, int L, int R) {
if (L == R) st[p] = L;
else {
build(left(p) , L, (L + R) / 2);
build(right(p), (L + R) / 2 + 1, R);
int pl1 = st[left(p)], p2 = st[right(p)];
st[p] = (A[p1l] <= A[p2]) ? pl : p2;

class SegmentTree {

private
private
private
private

private
if (L
else {

int[] st, A;
int n;
int left (int p) { return p << 1; }

int right(int p) { return (p << 1) + 1; }

void build(int p, int L, int R) {
== R) st[p] = L;

build(left(p) , L, (L + R) / 2);
build(right(p), (L + R) / 2 + 1, R);

int pl = st[left(p)], p2 = st[right(p)];
st[p] = (A[p1] <= A[p2]) ? pl : p2;

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Qo
ek

Implementation

d With the segment tree ready, answering an RMQ can be done in
O(log n).

d The answer for RMQ(i, i) is trivial—simply return i itself.

d However, for the general case RMQ(i, j), further checks are
needed.
Let p1=RMQ(i, (i+j)/2) and p2=RMQ((i+j)/2+1, j).
Then RMQ(i, j) is p1 if A[p1] £ A[p2] or p2 otherwise.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

. s £
Implementation $:
- 5 on €
B mm\ 1 | [2.31:=2 | S
oo QS -
aRMQ(1, 3):

o Start from the root (index 1) which represents segment [0, 6]. We cannot
use the stored minimum value of segment [0, 6].

o From the root, we only have to go to the left subtree as the root of the right
subtree represents segment [4, 6] which is outside the desired range in
RMQ(1, 3).

Dr Siba Haidar & Dr Antoun Yaacoub

33

. s £
Implementation $:
- 5 on €
B mm\ 1 | [2.31:=2 | S
oo QS -
aRMQ(1, 3):

o We are now at the root of the left subtree (index 2) that represents segment
[0, 3]. This segment [0, 3] is still larger than the desired RMQ(1, 3).

o RMQ(1, 3) intersects both the left sub-segment [0, 1] (index 4) and the right
sub-segment [2, 3] (index 5) of segment [0, 3], so we have to explore both
subtrees (sub-segments).

Dr Siba Haidar & Dr Antoun Yaacoub

. s £
Implementation $:
- 5 on €
B mm\ 1 | [2.31:=2 | S
oo QS -
aRMQ(1, 3):

o The left segment [0, 1] (index 4) of [0, 3] (index 2) is not yet inside the
RMQ(1, 3). From segment [0, 1] (index 4), we move right to segment [1, 1]
(index 9), which is now inside [1, 3].

o At this point, we know that RMQ(1, 1) = st[9] = 1 and we can return this
value to the caller. The right segment [2, 3] (index 5) of [0, 3] (index 2) is

inside the required [1, 3]. From the stored value inside this vertex, we know
that RMQ(2, 3) = st[5] = 2. We do not need to traverse further down.

Dr Siba Haidar & Dr Antoun Yaacoub

30

. s £
Implementation $:
- 5 on €
B mm\ 1 | [2.31:=2 | S
oo QS -
aRMQ(1, 3):

o Now, back in the call to segment [0, 3] (index 2), we now have p1 = RMQ(1,
1) =1 and p2 = RMQ(2, 3) = 2. Because A[pl] > A[p2] since A[1] =17 and
A[2] = 13, we now have RMQ(1, 3) = p2 = 2. This is the final answer.

Dr Siba Haidar & Dr Antoun Yaacoub

Implementation

d Build the segment tree of Array A=1{18, 17, 13, 19, 15, 11, 20}
and RMQ(4, 6)

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

-

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

(L)
-3

Implementation

int rmq(int p, int L, int R, int i, int j) {
if (i > R || j< L) return -1;
// current segment outside query range
if (L >= i & R <= j) return st[p];
// inside query range
// compute the min position in the left and right

int p1 = rmq(left(p) , L, (L+R) / 2, i, J);
int p2 = rmgq(right(p), (L+R) / 2 + 1, R, i, J);
if (p1 == -1) return p2;

// if we try to access segment outside query
if (p2 == -1) return pil;

// same as above
return (A[pl] <= A[p2]) ? pl : p2;

private int rmq(int p, int L, int R, int i, int j) {
if (i > R || j < L) return -1;
// current segment outside query range
if (L >= i & R <= j) return st[p];
// inside query range
// compute the min position in the left and right

int p1 = rmgq(left(p) , L, (L+R) / 2, i, J);
int p2 = rmg(right(p), (L+R) / 2 + 1, R, i, j);
if (pl == -1) return p2;

// if we try to access segment outside query
if (p2 == -1) return pil;

// same as above
return (A[pl] <= A[p2]) ? p1 : p2; }

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Usage

4 If the array A is static (i.e. unchanged after it is instantiated), then
using a Segment Tree to solve the RMQ problem is OVERKILL as
there exists a Dynamic Programming (DP) solution that requires
O(n log n) one-time pre-processing and allows for O(1) per RMQ.

d Segment Tree is useful if the underlying array is frequently
updated (dynamic).

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

- Array A ={18, 17, 13, 19, 15, & 99, 20} 5

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
O
O
©
>
[
>
O
o+
e
<
—
()
%)
—
©
o
©
I
©
O
(%2}
—
()

-

Implementation

d We just need to update the vertices along the leaf to root path in
O(log n).

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

d For comparison, the DP solution requires another O(n log n) pre-
processing to update the structure and is ineffective for such
dynamic updates.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

S
ek

< C & visualgo.net/en/segmenttree w ®

7 WISUALG Oe/ m/segmennree MIN SEGMENT TREE MAX v Exploration Mode ~

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

115,5] 15:[11,11]

16:[0,0] 17:[1,1] 20:[3,3] 21:[4,4] 24:6,6] 25:7,7] 28:[9,9]29:[10,10]

® & ® ® 6
0 1 2 3 4 5 6 7 8 9 10 11

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

About Team Terms of use

- 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

13341

b

Binary Indexed (Fenwick) Tree

>
o
(©]
©
©
>
c
>
]
o+
c
<
L -
()
o
—
©
o
©
I
©
Q0
w
—_
()

S
(G\)

Binary Indexed (Fenwick) Tree

d The Fenwick Tree is a useful data structure for implementing
dynamic cumulative frequency tables.

d Example

o we have test scores of m = 11 students
f={2,4,55,6,6,6,7,7,8,9} integer values ranging from [1..10].

In the following:

o The frequency of each individual test score = [1..10]

o The cumulative frequency of test scores ranging from [1..i] denoted by
cf[i]—that is, the sum of the frequencies of test scores 1, 2, ..., .

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

. . < E
Binary Indexed (Fenwick) Tree LE:
=S
S w
4 {2/4/5/5/6/6/6/7/7/8/9} § :%0
S 2
Index/ Frequency Cumulative Short Comment % g
Score f Frequency cf -~ S

0 Index 0 is ignored (as the sentinel value).

1 0 0 cf[1] = £f[1] = 0.
2 1 1 cf[2] = f[1] + f[2] =0 + 1 = 1. 2
3 0 1 cf[3] = f[1] + f[2] + f[81 =0+ 1 + 0 = 1. S
4 1 2 cf[4] = cf[3] + f[4] =1+ 1 = 2. -
5 2 4 cf[5] = cf[4] + f[5] = 2 + 2 = 4, 5
6 3 7 cf[6] = cf[5] + f[6] =4 + 3 = 7. <
7 2 9 cf[7] = cf[6] + f[7]1 =7 +2 = 9. -
8 1 10 cf[8] = cf[7] + f[8] = 9 + 1 = 10. g
9 1 11 cf[9] = cf[8] + £[9] = 10 + 1 = 11. ke
10 0 11 cf[10] = cf[9] + f[10] = 11 + 0 = 11 é
()]

S
(@) |

. . < E
Binary Indexed (Fenwick) Tree iz
- The cumulative frequency table § @

can also be used as a solution to Index/ Frequency Cumulative § 2
the Ra nge Sum Query (RSQ) chre f Frequency cf % g
problem. It stores RSQ(1, i) Vi { 0 0 -8
< [1..n] where n is the largest . 1 1
integer index/score. j ? i s
* In the example, we have n = 10, 5 2 4 Ee
RSQ(1, 1)=0,RSQ(1,2) =1, ..., 6 3 7
RSQ(1,6)=7,...,RSQ(1, 8) =10, .. 7 2 9 =
., and RSQ(1, 10) =11. 3 1 10 s
- when i 9 1 11 ?
wheni #1, | | 10 0 11 2
RSQ(i, j) = RSQ(1, j) - RSQ(1,i- 1). T
Example: &

RSQ(4, 6) = RSQ(1, 6) - RSQ(1, 3) =7
-1=6.

Binary Indexed (Fenwick) Tree

d Fenwick Tree operations are also extremely efficient as they use
fast bit manipulation techniques.

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

2 We will use the function LSOne (1) (which is actually (i & (-i))) .

d The operation (i & (-i)) produces the first Least Significant One-bit
In 1.

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

S
-3

LSOne (i)

0 To get the value of the least significant bit that is on (first from
the right),use T = (i & (-1)).

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

d Example
0i=40 (base 10) = ©000...000101000 (32 bits, base 2)
0-i=-40 (base 10) =111...111011000 (two’s complement)
O mmmmmmmmmmmmee AND
oT=8(base 10)= ©00...000001000 (3rd bit from right is on)

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

d The Fenwick Tree is typically implemented as an array (vector).

d The Fenwick Tree is a tree that is indexed by the bits of its integer
keys.

d These integer keys fall within the fixed range [1..n]—skipping
index O.

d In the previous table, the scores [1..10] are the integer keys in the
corresponding array with size n = 10 and m = 11 data points.

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

d Let the name of the Fenwick Tree array be ft:
o element at index i is responsible for elements in the range [1-LSOne(1)+1. . 1]
o ft[i] stores the cf of {1i-LSOne(i)+1,i-LSOne(i)+2,i-LSOne(1)+3, .., i}

range
RSQ(1, 6) = 7 ®/

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

value of ft[6]

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

8 9 10
1000 1001 1010
1 (10) 1 (11) O (11)

Index/Key [1 2
In Binary UUUOU 0001 0010
Frg (Cum) 0O (0O 0 (0) 1 (1)

Implementation

dft[4] = 2 is responsible for range
ft[6] = 5 is responsible for range
ft[7] = 2 is responsible for range |
ft[8] = 10 is responsi

RSQ(1, 6) = 7

ble for range [8-8+1. 8] =

4-4+1..4
6-2+1..6]

7-1+1..7

1..4]
5..6]
77
[1.

Index/Key U 1 2
In Binary UUUOU 0001 0010
Frg (Cum) 0O (0O 0 (0) 1 (1)

1 (10) 1 (11) O (11)

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

O
ek

Implementation

0 To obtain the cf between [1..b], i.e. rsq(b), we simply add ft[b],
ft[b’], ft[b’’], . . . until index b'is O.

o This sequence of indices is obtained via subtracting the Least Significant
One-bit via the bit manipulation expression: b’ = b - LSOne(b).

RSQ(1, 6) = 7 @

_./e/- -.‘\'.
Index/Key [1 2 3 . 8 9 10
In Binary UUUOU 0001 0010 0011 C1C0 1000 1001 1010

Frg (Cum) 0O (0O 0 (0) 1 (1) 0 (1) 1 K2 1 (10) 1 (11) O (11)

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
O
O
©
>
[
>
O
o+
e
<
—
()
o3
—
©
o
©
I
©
=
(%)
—
()

Implementation

drsq(6) = ft[6] + ft[4] =5 + 2 = 7. Notice that indices 4 and 6 are
responsible for range [1..4] and [5..6], respectively.

o The indices 6, 4, and 0 are related in their binary form: b = 6,5, =(110), can
be transformed to b’ = 4,, = (100), and subsequently to b”” = 0,5 = (000)s.

RSQ(1, 6) = 7 @
/,"-u

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

* @

o)
>
O
O
©
>
[
>
O
o+
e
<
—
()
o3
—
©
o
©
I
©
=
(%)
—
()

Index/Key [. 0 8 9 10
In Binary UUUOU 0031 OCIO 00 C1C0 0101 0110 0111 1000 1001 1010
Frg (Cum) 0O (0O 0 (0) 1 (1) 0 (‘_) 1 (2) 2 (4) 3 (7)) 2 (9) 1 (10) 1 (11) O (11)

Ot
o

Implementation

d cf between [a..b] where a =1 is simple, evaluate
rsq(a, b) = rsq(b) - rsq(a - 1).

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

drsqg(4, 6), we can simply return rsq(6) - rsq(3) = (5+2) - (0+1) =7 -
1==6.

RSQ(1, 6) = 7 @

/2
f \
\)

.\ / /"

@ ®

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

3 4 3 0 7 8 9 10
In Binary U000 0001 0010 0011 C100 0101 0110 0111 1000 1001 1010
Frg (Cum) 0O (0O 0 (0) 1 (1) O (1) 1 (2) 2 (4) 3 (7) 2 (%) 1 (10) 1 (11) 0 (11)

Index/Key [

Implementation

d When updating the value of the element at index k by adjusting
its value by v (note that v can be either positive or negative), i.e.
calling adjust(k, v), we have to update ft[k], ft[k’], ft[k’’], . . . until
index k' exceeds n. k' = k + LSOne(k).

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

@ ®

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

© ®

Index/Key 0 1 2 3 4 » o 7 C S 10
In Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
Frgq (Cum) 0 (0) ©O (0) 1 (1) O (1) 1 (2) 3 (5 4 (8) 3 (10) 2 (11) 2 (12) 1 (12)

Ot
Ot

Implementation

dadjust(5, 1) will affect (add +1 to) ft[k] at indices k =5,,=(101),,
k' = (101), + (001), = (110) , = 640, and k”” = (110) , + (010) , =
(1000) , = 8,, via the expression given above.

@ ® © ®

Index/Key 0 1 2 3 4 o 0 7 8 S 10
In Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
Frgq (Cum) 0 (0) ©O (0) 1 (1) O (1) 1 (2) 3 (5 4 (8) 3 (10) 2 (11) 2 (12) 1 (12)

- 2019-2020 - Textbook:

Competitive Prog. 3 by Dr Halim

13341

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

Implementation

class FenwickTree {

}s

private Vector<Integer> ft;
private int LSOne(int S) { return (S & (-S)); }
public FenwickTree() {}

// initialization: n + 1 zeroes, ignore index ©
public FenwickTree(int n) {

ft = new Vector<Integer>();

for (int i = 9; i <= n; i++) ft.add(9);
}

public int rsq(int b) { // returns RSQ(1, b)
int sum = @; for (; b > ©; b -= LSOne(b)) sum += ft.get(b);
return sum; }

public int rsq(int a, int b) { // returns RSQ(a, b)
return rsq(b) - (a==1?0 : rsq(a - 1)); }

// adjusts value of the k-th element by v (v can be +ve/inc or -ve/dec)
void adjust(int k, int v) { // note: n = ft.size() - 1
for (; k < (int)ft.size(); k += LSOne(k)) ft.set(k, ft.get(k) + v); }

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

0
>
(@)
(@]
©
>—
C
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

O
-3

& C & visualgo.net/en/fenwicktree w ® <

7 WISUALE Oney flenwickiree FENWICK TREE (POINT UPDATE RANGE QUERY) (RU PQ) (RU RQ) Exploration Mode +

00000000 0

13341 - 2019-2020 - Textbook:
Competitive Prog. 3 by Dr Halim

o)
>
(@)
(@]
©
>—
[
>
(@]
-
[
<
—
()]
o3
[
©
S
©
T
©
2
(V]
—
()]

M« a4 01 » e About Team Terms of use

