
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204 - Imperative Programming

Dr Siba Haidar

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Linked Lists Exercises

Chapter 4

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Exercise: type contact

• contact type is defined to manage sorted linked list of contacts
• data stored concerns
– name
– tel (int)

• define the data type contact

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: Push contact

• write the Push function which pushes a new node to the head
of a contact list
– (push does not care of the order)

– the function type must be void

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: printContact

• write the function printContact which prints a given contact

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: printContacts

• write the function printContacts() that prints out the content
of a given contact list, a contact per line
– iterative version
– recursive version

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: deleteContact

• write the function deleteContact() that given a list of contacts,
and a name, deletes the contact holding that name from the
list
– only first iteration
– all of them

– using localRef or not
– iterative version
– recursive version

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: deleteList

• write the function deleteList() that takes a list of contacts,
deallocates all of its memory and sets its head pointer to NULL
(the empty list)

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: insert

• write the function insert() that inserts a given name and tel
number in a given list
– in the right place à remember they are sorted

– iterative version
– recursive version

• hint : think of using the Push function, with the appropriate
parameters

Dr Siba HAIDAR - Lebanese University - I2204

• write a function numberOf() that returns the telephone
number of a given name
– of the first occurrence

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: numberOf

Exercise: displayAll

• write a recursive function displayAll() that displays all the
contacts having a given name

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: occurrence

• write the function occurrence() that returns the number of
times a given name occurs in a given list
– iterative version
– recursive version

Dr Siba HAIDAR - Lebanese University - I2204

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Important

• In the following, we will use the following declaration:
typedef struct node{

int data;
struct node* next;

} node;

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: count

typedef struct node{int data; struct node* next;} node;

• write the function count (iterative & recursive)
– returns the number of nodes in a list

void countTest(){
node* head=buildList();
printf("%d", count(head)); //7

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: printList

typedef struct node{int data; struct node* next;} node;

• write the function printList (iterative & recursive)
– prints on the screen the values in data field of nodes

• example
void printListTest(){

node* head=buildList();
printList(head); // 1,3,5,6,3,8,9

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: printRList

• Write a function named printRList that prints the list elements
in reverse order.

void printRList Test(){
node* head=buildList();
printRList(head); // 9,8,3,6,5,3,1

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: averageList

• Write a function named averageList that prints the average of
nodes in the list.

void averageListTest(){
node* head=buildList();
printf("%lf",averageList(head)); // 5.0

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: isSortedList

• Write a function named isSortedList that checks whether the
nodes in a list are sorted in ascending order.

void isSortedListTest(){
node* head=buildList(),*head2=buildListSorted();
printf("%d",isSortedList(head)); // 0
printf("%d",isSortedList(head2)); // 1

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: incList

• Write a function named incList that adds a number passed as a
parameter to each element of a given list.

void incListTest(){
node* head=buildList();
addNumberToList(head,2);
printList(head); // 3,5,7,8,5,10,11

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: isRepeatedInList

• Write a function named “isRepeatedInList ” that checks
whether a number is repeated in the list.

void isRepeatedInListTest(){
node* head=buildList();
printf("%d", isRepeatedInList(head,3)); // 1
printf("%d", isRepeatedInList(head,8)); // 0
printf("%d", isRepeatedInList(head,4)); // 0

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: swapInList

• Write a function named “swapInList ” that swaps the contents
of 2 nodes (of index i and j) in the list

void swapInListTest(){
node* head = buildList();
swapInList(&head,1,3); // swaping 3 by 6
printList(head); // 1,6,5,3,3,8,9

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: removeFromList

• Write the function removeFromList which removes from a given list,
the nodes having the given value.
– iterative
– recursive

void removeFromListTest(){
node* head=build123();
removeFromList(&head,1);
printList(head);

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: insertNthList

• Write the function insertNthList which inserts in a given list, a given
value, at a given index.
– iterative

– recursive

void insertNthListTest(){
node* head=build123();

insertNthList(&head,1, 2);

printList(head);

}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: PushToEnd

• Write the function insertNthList which inserts in a given list, a given
value, at a given index.
– iterative
– recursive

void PushToEndTest(){
node* head=build123();
PushToEnd(&head,4);
printList(head);

}

Dr Siba HAIDAR - Lebanese University - I2204

List Application

• Write a complete Linked List
Application with a menu.

• in a while(1) loop calls
– menu() à see next slide
– scanf()

• if 0 exit from loop
• if nb between 1 and 8

– call the “call” function à see next slides

• function to print menu:
– Enter your choice,
– 1- create a empty list of integers
– 2- display your list
– 3- add one node to the head of your list
– 4- add one node to the tail of your list
– 5- delete one node containing the value v
– 6- delete all the nodes containing the

value v
– 7- free the list
– 8- insert a value at given index (insertNth)
– Etc

Dr Siba HAIDAR - Lebanese University - I2204

Example to a call function

• suppose the user enters the choice 8
• insert a value at given index
• the function insertCall() will be called:
• void insertCall(node ** headRef){

int value, index;
//read v from keyboard..

printf(“please enter the value and the index”);
scanf (“%d %d”, &value, &index);
//call add to insertNth
insertNth (headRef, index, value);

}

Dr Siba HAIDAR - Lebanese University - I2204

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Exercise: major

typedef struct Student{char name[20]; int id, grades[6];}std;
typedef struct node{std data; struct node* next;}node;

• write a function major which
– given a list of students in a class
– return a pointer to the major of the class
– the major is the student with highest average

Dr Siba HAIDAR - Lebanese University - I2204

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Exercise: transfer

typedef struct node{
char name[20];
int id;
double balance;
struct node* next;

}node;

• write a function transfer which
– given a list of bank accounts, and
– two account number, and
– an amount
– transfers the given amount fro the balance of the sender (id=from)

to the receiver (id=to)

Dr Siba HAIDAR - Lebanese University - I2204

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Polynomial

• we use linked lists to represent polynomials
• each node in the list corresponds to a term c!", with its

coefficient c and its exponent e

#$!% + '!(+ %! + '

Dr Siba HAIDAR - Lebanese University - I2204

head 10 3 5 2 3 1 5 0

Exercise: term

• define the data type term containing the following fields
–coef
–exp
–next

Dr Siba HAIDAR - Lebanese University - I2204

10 3

Exercise: PushTerm

• write the function Push()

– that creates and adds a new term to the head of a given list, term

data are given as arguments

– this is the classic void Push we studied in the course that takes

double pointer (headRef)

• write PushTest()

– construct the polynomial 10#$ + 5#' + 3# + 5
– hint : put all the coefs in an array and all the corresponding exps in

another array both of size 4, then loop and Push one node at a time

Dr Siba HAIDAR - Lebanese University - I2204

• write the recursive function printPolynomial()
– that prints a given polynomial on the screen
– example : [10$% + 5$(+ 3$ + 5]

• write printPolynomialTest()

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: printPolynomial

Exercise: addPolynomials

• write the function addPolynomials()
– that sums 2 given polynomials and returns the result
– the result will be a 3rd polynomial allocated in heap

• write the function addPolynomialsTest()
– create 2 polynomials (recall PushTest)
– print them
– add them
– print the resulting polynomial
!"#$ + &#' + $# + & + [$#$ − *#' + $# − +]=[!$#$ − '#' + +# − !]

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: addPolynomials2

• For advanced students
• Repeat the lab taking into account terms having zero coefficients !"#
• Zero coefficient terms must not be present (allocated)

$!"% + '"(+)"* + '

• Rethink the addPolynomials2()
– the sum of 2 terms of nonzero coefficients may lead to zero; '"* − '"* = !
– there may be nonzero terms in first polynomial and zero terms in the second

and vice-versa;
[$!"% + '"(+)"* + '] + [3". +)"(+)" − #] = [3". + $!"% + ."(+
)"* +)" − $]

Dr Siba HAIDAR - Lebanese University - I2204

head 10 7 5 4 3 2 5 0

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

Doubly Linked Lists

• Consider the following data type:
typedef struct node{

int d;
struct node *next, *prev;

} node;

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: reverse

• Write a function "reverse" which reverses the order of the
nodes in a given doubly linked list of integers.

• For example,
– the list
• [3⇌9 ⇌5⇌1]

– becomes after the call to reverse
• [1⇌ 5⇌ 9⇌ 3]

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: merge

• Write a function "merge" which
– merges two sorted doubly linked lists of integers into one.

– The merged list must remain sorted.

– No Node allocation or deletion is allowed.

– Only one iteration is allowed for each list.

– The function must return the head of the resulting merged list.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: clean

• Write the function "clean" which,
– given a doubly linked list of integers, not sorted,
– finds and deletes all the duplicates from the list.

• For example,
– the list
• [1⇌ 5 ⇌ 9⇌ 5⇌ 1⇌ 3⇌ 3⇌ 1⇌ 1]

– becomes after the call to clean
• [1⇌ 5⇌ 9⇌ 3].

Dr Siba HAIDAR - Lebanese University - I2204

1. Linked List of Contacts

2. Linked List of Integers

3. Linked List of Students

4. Linked List of Bank Accounts

5. Polynomials: Linked List of Terms

6. Doubly Linked List

7. AMSTRAMGRAM: Circular Linked List

Dr Siba HAIDAR - Lebanese University - I2204

Linked List Exercises

AM-STRAM-GRAM

• To play the AM-STRAM-GRAM game,
– N children form a circle,
– choose a child to be the first,
– start counting from this child till the kth child who leaves the circle,
– then we continue counting from current child till the next kth child

who will leave the circle ,
– and so on until no child is left in the circle.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: struct child

• We suppose that a child is represented by an integer number
• Define the adequate data structure

Dr Siba HAIDAR - Lebanese University - I2204

list of children

• We represent the circle of children by a circular list

– the last node points to the first one instead of pointing to NULL

• so to iterate down the list
– the condition while(current!=NULL) is not valide anymore!!!
– what is the new condition??

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: play

• Write a function that displays the set of children in the order of their
removal from the circle.

• Each time a child must leave the circle,
– its node must be freed and
– the linking must be maintained

• the node before must points to the node after
• unless we remove the last node in list
• pay attention when you remove the first node (head value changes)

• The function inputs are
– the list
– the number k

• Example: for k = 3 and the following list :

Dr Siba HAIDAR - Lebanese University - I2204

Dr Siba HAIDAR - Lebanese University - I2204

