
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204 - Imperative Programming

Dr Siba Haidar

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Linked Lists

Chapter 4

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

The Local Memory (The Stack)

• most common use
• behaves as a first-in-last-out buffer
• essential element: Stack Pointer

register
• variables allocated on the stack are

– stored directly
– fast access
– "locals": lifetime tied to the function

where they are declared
• function runs à allocated
• function exits à deallocated

int square(int num) {
int result;
result = num * num;
return result;

}

Dr Siba HAIDAR - Lebanese University - I2204

Memory State
Stack
square

num

result

Memory State
Stack

VICTIM TAB

ptr temp

The Ampersand (&) Bug — TAB

int* TAB() {
int temp;
return(&temp);

}

void Victim() {
int* ptr;
ptr = TAB();
*ptr = 42;

}

Dr Siba HAIDAR - Lebanese University - I2204

Local: The Stack

• used for static memory allocation
• automatic
– variables allocated | deallocated

automatically on function call | exit

Dynamic: The Heap

• used for dynamic memory allocation
• nothing happens automatically
– explicit request of allocation |

deallocation of memory

Dr Siba HAIDAR - Lebanese University - I2204

Memory

Dynamic: The Heap

• used for dynamic memory allocation
• nothing happens automatically
– explicit request of allocation |

deallocation of memory

Dr Siba HAIDAR - Lebanese University - I2204

Memory

Disadvantages
• more work
• more bugs
• greater responsibility

Advantages
• lifetime controlled
• size controlled
• greater control of memory

Dynamic Allocation Functions

#include <stdlib.h>
• core of allocation system consists of

functions malloc() and free()

• malloc(): allocates memory from
portion of remaining free memory

• free(): releases memory and
returns it to system; and so may be re-
used to satisfy future allocation
requests

Dr Siba HAIDAR - Lebanese University - I2204

Memory State
Stack Heap
main

ptr

Memory State
Stack Heap
main

ptr

Allocation

void * malloc(size_t number_of_bytes);

• program can explicitly request areas, or "blocks", of memory for use by calling function
malloc, which, reserves in heap a block of memory of requested size and returns a
pointer to it

int *ptr;
ptr = (int *) malloc(50 * sizeof(int));

• check if the memory was really allocated before using it:

if(!ptr){
printf("Out of memory.\n");
exit(1);

}

Dr Siba HAIDAR - Lebanese University - I2204

Memory State
Stack Heap
main

ptr

Deallocation

void free (void *p);
• if program finished using a block of memory, it must make an explicit

deallocation request to indicate so to heap manager, which updates its private
data structures.

free(ptr);

• remember to reset ptr after free
ptr = NULL;

Never call free() with an invalid
argument;
it will destroy the free list.

Dr Siba HAIDAR - Lebanese University - I2204

Memory State
Stack Heap
main

ptr

Memory State
Stack Heap
main

ptr

Exercise: Allocate & Fill

Write a program which:
• defines a struct type student (name + 6 marks)
• asks for the exact number of students
• asks a function "allocFill" to allocate in the heap an array to

hold the students info, and fill their info from the keyboard
• asks another function "average" to calculate and return the

class average
• displays the class average
• frees the dynamic memory

Dr Siba HAIDAR - Lebanese University - I2204

let’s code

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

1. Local vs. Dynamic Memories: Stack & Heap

2. Linked Lists

3. Seven Code Techniques from Nick Parlante

4. Operations over Linked Lists

5. Linked Lists Variants

Linked Lists

• useful for 2 reasons
– data structure used in real programs
– appreciation of time, space, code issues, useful to thinking about any

data structures in general

• great way to learn about pointers:
– problems are a nice combination of algorithms and pointer

manipulation

Dr Siba HAIDAR - Lebanese University - I2204

Why Linked Lists?

• similar to arrays: both store collections of data
• different strategies

• arrays strategy:
1. entire array is allocated as one block of memory
2. direct access using [] syntax

• linked lists strategy:
1. memory allocation for each element separately only when necessary
2. access is more complex

Dr Siba HAIDAR - Lebanese University - I2204

Disadvantages of Arrays

1. fixed size
– specified at compile time
– even if deferred until runtime,

after that it remains fixed

2. allocate "large enough"
– most of time 70% of space is

wasted
– if need more, code breaks
– ++ commercial codes

can allocate array in heap and then
dynamically resize it with realloc()
– OK but …

3. inserting new elements at the
front is expensive
– because existing elements need to

be shifted over to make room

Dr Siba HAIDAR - Lebanese University - I2204

array
0 1 2 3 … 99

What Linked Lists Look Like

• node: linked list element
• list gets its overall structure by

using pointers to connect all its
nodes together like links in a
chain

• each node contains 2 fields
– "data" field: store whatever

element type list holds for its
client

– "next" field: pointer to link one
node to next node

node definition
struct node {

int data;
struct node* next;

};
• each node
– allocated in heap with malloc()
– continues to exist until explicitly

deallocated with free()

• front of list
– a pointer to first node

Dr Siba HAIDAR - Lebanese University - I2204

Example : List {1, 2, 3}

• The overall list is built by connecting the nodes together by
their next pointers. The nodes are all allocated in the heap.

Dr Siba HAIDAR - Lebanese University - I2204

Memory State
Stack Heap
main

head data 1 data 2 data 3

next next next

Memory State
Stack Heap
main

head

The Empty List — NULL

• empty list — list with zero nodes: NULL head pointer
– empty list case is "boundary case" for linked list code:
– good habit to remember to check empty list case to verify that it

works too

Dr Siba HAIDAR - Lebanese University - I2204

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

Dr Siba HAIDAR - Lebanese University - I2204

int length(struct node* head) {
int count = 0;
struct node* current = head;
while (current != NULL) {
count++;
current = current->next;

}
return count;

}

• iterate a pointer over all nodes in
a list, using a loop
– copy head pointer into local

variable
• current = head

– test for end of list with
• current != NULL

– advance pointer with
• current = current->next

1) Iterate Down a List

Dr Siba HAIDAR - Lebanese University - I2204

int length(struct node* head) {
int count = 0;
struct node* current = head;
while (current != NULL) {
count++;
current = current->next;

}
return(count);

}

for (current = head;
current != NULL;
current = current->next)

count++;

• iterate a pointer over all nodes in
a list, using a loop
– copy head pointer into local

variable
• current

– test for end of list with
• current != NULL

– advance pointer with
• current = current->next

• for loop makes initialization, test,
and pointer advance harder to
omit...

1) Iterate Down a List

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

lengthTest length

head

head data 1 data 2 data 3

current next next next

count 0

1) Iterate Down a List

• iteration 1:

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

lengthTest length

head

head data 1 data 2 data 3

current next next next

count 1

1) Iterate Down a List

• iteration 2:

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

lengthTest length

head

head data 1 data 2 data 3

current next next next

count 2

1) Iterate Down a List

• iteration 3:

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

lengthTest length

head

head data 1 data 2 data 3

current next next next

count 3

1) Iterate Down a List

• Stopping condition: current == NULL

Dr Siba HAIDAR - Lebanese University - I2204

memory state

2) Changing a Pointer With A Reference Pointer

• if functions need to change caller's
head pointer à pass pointer to head
pointer: reference pointer
– to change a node*, pass a node**
– use & in call
– use * in callee function to access and

change value

void change2Null(node** headRef) {
*headRef = NULL;

}
void changeTest() {
node* head1, *head2;
change2Null(&head1);
change2Null(&head2);
printf("%p %p\n", head1, head2);

}
Memory State

Stack Heap
changeTest change2Null change2Null

head1

headRef headRef
head2

Dr Siba HAIDAR - Lebanese University - I2204

Special Application: List Building

• Best Solution
– independent function that adds a single new node to any list
– can call function as many times as we want to build up any list

• Classic 3-Step Link In Operation
– adds a single node to the front of a linked list
– 3 steps = allocate & fill + link next + link head

à Push: add a node to
the head of the list
.

Dr Siba HAIDAR - Lebanese University - I2204

Push: add a node to the head of the list

Dr Siba HAIDAR - Lebanese University - I2204

• 3-Step Link In operation

1. allocate & fill: allocate the
new node in the heap and
set its .data to whatever
needs to be stored

2. link next: set the .next pointer
of the new node to point to
the current first node of the
list

3. link head: change the head
pointer to point to the new
node, so it is now the first
node in the list

void Push (node ** headRef, int d){

// 1 - allocate & fill
node * newNode = (node *) malloc (sizeof (node));
newNode->data = d;

// 2 - link next
newNode->next = *headRef;

// 3 - link head
*headRef = newNode;

}

Push Animation

• Suppose we have
the list {1,2,3} and
we want to push 0
to the head of the
list, so it becomes
{0,1,2,3}.

Dr Siba HAIDAR - Lebanese University - I2204

void Push (node ** headRef, int d){

// 1 - allocate & fill
node * newNode = (node *) malloc (sizeof (node));
newNode->data = d;

// 2 - link next
newNode->next = *headRef;

// 3 - link head
*headRef = newNode;

}

Memory State

Stack Heap

PushTest

head data 1 data 2 data 3

next next next

Push Animation (1)

• Initial state: {1,2,3}

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

PushTest Push

head data 1 data 2 data 3

headRef next next next

d 0

Push Animation (2)

• Call Push (&head, 0) :

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

PushTest Push

head data 1 data 2 data 3

headRef next next next

d 0

newNode

data 0

next

Push Animation (3)

• 1 - allocate & fill:

Dr Siba HAIDAR - Lebanese University - I2204

memory state

node* newNode=(node*)malloc(sizeof(node));
newNode->data = d;

Memory State

Stack Heap

PushTest Push

head data 1 data 2 data 3

headRef next next next

d 0

newNode

data 0

next

Push Animation (4)

• 2 - link next: newNode->next = *headRef;

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

PushTest Push

head data 1 data 2 data 3

headRef next next next

d 0

newNode

data 0

next

Push Animation (5)

• 3 - link head: *headRef = newNode;

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

PushTest

head data 1 data 2 data 3

next next next

data 0

next

Push Animation (6)

• final state: {0,1,2,3}

Dr Siba HAIDAR - Lebanese University - I2204

memory state

3) Build — At Head With Push()

• easiest way to build up a list is by
adding nodes at its "head end"
with Push()

• code is short and runs fast: lists
naturally support operations at
head end

• disadvantage: elements will
appear in the list in reverse
order that they are added

struct node* AddAtHead() {

struct node* head = NULL;

int i;
for (i=1; i<6; i++) {
Push(&head, i);

}

// {5, 4, 3, 2, 1};
return head;

}

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

AddAtHead

head data 5 data 4 data 3

next next next

i 6

data 2 data 1

next next

3) Build — At Head With Push()

Dr Siba HAIDAR - Lebanese University - I2204

memory state

4) Build — With Tail Pointer

• add nodes at "tail end" of list: locate
last node in list, and change its .next
field from NULL to point to new node

• one exception is if node is first in list:
in that case head pointer itself must
be changed

• This is a special case of general rule
(insert or delete a node inside a list), for
this we need a pointer to node just
before that position, then we change its
.next field.

• Many list problems include the sub-
problem of advancing a pointer to node
before point of insertion or deletion.

for (current = head;
current && current->next;
current = current->next)

//...

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

Add2TailTest Add2Tail

head data 1 data 2 data 3

headRef next next next

d 4

tail

data 4

newNode

next

4) Build — With Tail Pointer

example: add 4 to end of {1,2,3}

Dr Siba HAIDAR - Lebanese University - I2204

memory state

5) Build — Special Case + Tail Pointer

• build up list {1, 2, 3, 4, 5} by
appending nodes to tail end

• technique:
– every first node must be added at

head pointer

– all other nodes inserted after last
node using tail pointer

• problem: writing separate
special case code for first node is
unsatisfying

Dr Siba HAIDAR - Lebanese University - I2204

struct node* BuildWithSpecialCase(){
struct node* head = NULL;
struct node* tail;
int i;
Push(&head, 1);
tail = head;
for (i=2; i<6; i++) {
Push(&(tail->next), i);
tail = tail->next;

}
// {1, 2, 3, 4, 5};
return head;

}

Memory State

Stack Heap

BuildWithSpecialCase

head data 1 data 2 data 3

next next next

tail

data 4 data 5

i 6

next next

5) Build — Special Case + Tail Pointer

Dr Siba HAIDAR - Lebanese University - I2204

memory state

6) Build — Dummy Node

• use temporary dummy node at
head of list during computation

• trick with dummy: every node
appear to be added after .next
field of a node à code for first
node is same as for other nodes

• tail pointer plays same role as in
previous example, so it also
handles first node

struct node* BuildWithDummyNode() {
struct node dummy;
dummy.next = NULL;
// Dummy node is temp. first node
struct node* tail = &dummy;
int i;
for (i=1; i<6; i++) {
Push(&(tail->next), i);
tail = tail->next;

}
return dummy.next;

}

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

BuildWithDummyNode

dummy data 1 data 2 data 3

data

next next next

next

tail

data 4 data 5

i 6

next next

6) Build — Dummy Node

Dr Siba HAIDAR - Lebanese University - I2204

memory state

6) Build — Dummy Node

Remarks: can keep dummy node permanent part of list
• empty list is not represented by a NULL pointer
• every list has dummy node at its head
• algorithms skip over dummy node for all operations

• heap allocated dummy node is always present to provide above sort
of convenience in code

• dummy-in-the stack strategy, like the example in previous slide, is a
little unusual, but it avoids making the dummy permanent part of
list

Dr Siba HAIDAR - Lebanese University - I2204

7) Build — Local References

• unify all node cases without using
dummy node

• use a local reference pointer
which always points to last pointer
in list instead of to last node

• reference pointer starts off
pointing to head pointer

• additions to list are made by
following reference pointer

• later, it points to .next field
inside last node in list

struct node* BuildWithLocalRef() {
struct node* head = NULL;
struct node** lastPtrRef= &head;

int i;
for (i=1; i<6; i++) {
Push(lastPtrRef, i);

lastPtrRef= &((*lastPtrRef)->next);

}
// head == {1, 2, 3, 4, 5};
return(head);

}
Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

BuildWithLocalRef

head

lastPtrRef

i

7) Build — Local References

• initial state

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

BuildWithLocalRef

head data 1

next

lastPtrRef

i 1

7) Build — Local References

• after first iteration …

Dr Siba HAIDAR - Lebanese University - I2204

memory state

Memory State

Stack Heap

BuildWithLocalRef

head data 1 data 2 data 3

next next next

lastPtrRef

data 4 data 5

i 6

next next

7) Build — Local References

• final state

Dr Siba HAIDAR - Lebanese University - I2204

memory state

7) Build — Local References

struct node* BuildWithLocalRef() {
struct node* head = NULL;
struct node** lastPtrRef= &head;

int i;
for (i=1; i<6; i++) {
Push(lastPtrRef, i);

lastPtrRef= &((*lastPtrRef)->next);

}
// head == {1, 2, 3, 4, 5};
return(head);

}
Dr Siba HAIDAR - Lebanese University - I2204

Important Remark about Local References
node ** ptrRef; // ...

Do not confuse 2 different syntaxes à VERY different behavior

Dr Siba HAIDAR - Lebanese University - I2204

*ptrRef = (*ptrRef)->next; ptrRef = &((*ptrRef)->next);

Memory State

Stack Heap

head data 1 data 2 data 3

next next next

ptrRef

data 4 data 5

next next

Memory State

Stack Heap

head data 1 data 2 data 3

next next next

ptrRef

data 4 data 5

next next

Important Remark about Local References
node ** ptrRef; // ...

Do not confuse 2 different syntaxes à VERY different behavior

Dr Siba HAIDAR - Lebanese University - I2204

node * tmp = *ptrRef;
*ptrRef = (*ptrRef)->next;
free(tmp);
à need to free the skipped node!

ptrRef = &((*ptrRef)->next);

Memory State

Stack Heap

head data 1 data 2 data 3

next next next

ptrRef

data 4 data 5

next next

Memory State

Stack Heap

head data 1 data 2 data 3

next next next

ptrRef

data 4 data 5

next next

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

Operations over Linked Lists

1. insert in the middle: insertNth,
insertSorted, insertAfter,
insertBefore, etc.

2. removeFirst
3. removeLast
4. remove from the middle: …
5. deleteList
6. and many others

• not to forget to free the
removed nodes

Study
"Linked List Problems

by Nick Parlante"

Dr Siba HAIDAR - Lebanese University - I2204

Example: InsertNth

• insert a new node at any index within a list

• may specify any index in the range [0..length], and the new
node should be inserted so as to be at that index

Dr Siba HAIDAR - Lebanese University - I2204

InsertNthTest()

void insertNthTest() {

// start with the empty list
struct node* head = NULL;

insertNth(&head, 0, 13);// {13}

insertNth(&head, 1, 42);// {13, 42}

insertNth(&head, 1, 5); // {13, 5, 42}

deleteList(&head);
// clean up after ourselves

}

Dr Siba HAIDAR - Lebanese University - I2204

InsertNth()

void insertNth(struct node** headRef, int index, int data) {

if((index < 0) || ((index > 0) && (*headRef == NULL)))
printf("\nError: insert canceled; index out of range.");

else if(index == 0)
Push(headRef, data); //base case is Push

else
insertNth(&((*headRef)->next), index-1, data);

}

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

head data 13 data 42

headRef headRef headRef next next

index 1 index 0 d 5

data 5 data 5 newNode data 5

next

InsertNth()

Dr Siba HAIDAR - Lebanese University - I2204

Example: on list {13,42}, call insertNth(&head,1,5) à {13,5,42}

memory state

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

head data 13 data 42

headRef headRef headRef next next

index 1 index 0 d 5

data 5 data 5 newNode data 5

next

InsertNth()

Dr Siba HAIDAR - Lebanese University - I2204

Example: on list {13,42}, call insertNth(&head,1,5) à {13,5,42}

memory state

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

head data 13 data 42

headRef headRef headRef next next

index 1 index 0 d 5

data 5 data 5 newNode data 5

next

InsertNth()

Dr Siba HAIDAR - Lebanese University - I2204

Example: on list {13,42}, call insertNth(&head,1,5) à {13,5,42}

memory state

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

head data 13 data 42

headRef headRef headRef next next

index 1 index 0 d 5

data 5 data 5 newNode data 5

next

InsertNth()

Dr Siba HAIDAR - Lebanese University - I2204

Example: on list {13,42}, call insertNth(&head,1,5) à {13,5,42}

memory state

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

head data 13 data 42

headRef headRef headRef next next

index 1 index 0 d 5

data 5 data 5 newNode data 5

next

InsertNth()

Dr Siba HAIDAR - Lebanese University - I2204

Example: on list {13,42}, call insertNth(&head,1,5) à {13,5,42}

memory state

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

Doubly Linked List (DLL)

• node definition
struct node {
int data;
struct node *prev, *next;

};

• rethink Push and all the other
operations
– insertNth
– removeNode,
– etc

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

head data 1 data 2 data 3

prev prev prev

next next next

memory state

Circular Linked List (CLL)

• last next field points to the first
node

• stopping condition must be
changed!
– use: do .. while

• rethink Push and all the other
operations
– insertNth

– removeNode,

– etc

Dr Siba HAIDAR - Lebanese University - I2204

Memory State

Stack Heap

head data 1 data 2 data 3

next next next

memory state

Other Linked Lists

1. Doubly Circular Linked List (DCLL),

2. Linked List with Random Pointer (RLL),
3. Next Course "Data Structures" : HashTables, Trees, Graphes,

Dr Siba HAIDAR - Lebanese University - I2204

1. Local vs. Dynamic Memories: Stack & Heap
2. Linked Lists
3. Seven Code Techniques from Nick Parlante
4. Operations over Linked Lists
5. Linked Lists Variants

Dr Siba HAIDAR - Lebanese University - I2204

Linked Lists

