Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

12204 - Imperative Programming

Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

Linked Lists

Linked Lists

Local vs. Dynamic Memories: Stack & Heap
Linked Lists

Seven Code Techniques from Nick Parlante
Operations over Linked Lists

Linked Lists Variants

vk wbh e

Dr Siba HAIDAR - Lebanese University - 12204

Linked Lists

1. Local vs. Dynamic Memories: Stack & Heap

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

The Local Memory (The Stack)

most common use
behaves as a first-in-last-out buffer

essential element: Stack Pointer
register

variables allocated on the stack are
— stored directly

— fast access

— "locals": lifetime tied to the function
where they are declared
* function runs - allocated
* function exits 2 deallocated

int square(int num) {
int result;
result = num * num;
return result;

Memory State

Stack

square

num

result

Dr Siba HAIDAR - Lebanese University - 12204

The Ampersand (&) Bug — TAB

intx TAB() {

}

int temp;
return(&temp);

void Victim() {

}

intx ptr;
ptr = TAB();
xptr = 42;

Memory State

Stack

VICTIM

ptr

—

/7

R =

Dr Siba HAIDAR - Lebanese University - 12204

Memory

Local: The Stack Dynamic: The Heap
* used for static memory allocation * used for dynamic memory allocation
e automatic * nothing happens automatically
— variables allocated | deallocated — explicit request of allocation |
automatically on function call | exit deallocation of memory

Dr Siba HAIDAR - Lebanese University - 12204

Memory

Advantages
* lifetime controlled él o

* sjze controlled

dv3H

e greater control of memory

Disadvantages))
e used for dynamic memory allocation
* more work

« more bugs * nothing happens automatically

* greater responsibility — explicit request of allocation |
deallocation of memory

Dr Siba HAIDAR - Lebanese University - 12204

Dynamic Allocation Functions

#include <stdlib.h>

» core of allocation system consists of
functions malloc() and free()

« malloc(): allocates memory from
portion of remaining free memory

« free(): releases memory and
returns it to system; and so may be re-
used to satisfy future allocation
requests

Memory State

Stack Heap

main

prr [=

Memory State

Stack Heap

main

ptr [

Dr Siba HAIDAR - Lebanese University - 12204

Allocation

void * malloc(size_t number_of_bytes);

e program can explicitly request areas, or "blocks", of memory for use by calling function
malloc, which, reserves in heap a block of memory of requested size and returns a
pointer to it

int xptr;

ptr = (int %) malloc(50 * sizeof(int));

e check if the memory was really allocated before using it:
Memory State

if(!ptr){ Stack Heap
printf("Out of memory.\n"); main
exit(1); -

+ ptr [~

Dr Siba HAIDAR - Lebanese University - 12204

Deallocation

void free (void xp);

* if program finished using a block of memory, it must make an explicit
deallocation request to indicate so to heap manager, which updates its private
data structures.

free(ptr);

* remember to reset ptr after free

ptr = NULL; Memory State

Stack Heap

main

Never call free() with an invalid />
argument; o IZ(

it will destroy the free list.

Dr Siba HAIDAR - Lebanese University - 12204

e TR

Exercise: Allocate & Fill =%
A=
=
Write a program which: erseode
» defines a struct type student (name + 6 marks)
 asks for the exact number of students

» asks a function "allocFill" to allocate in the heap an array to
hold the students info, and fill their info from the keyboard

* asks another function "average" to calculate and return the
class average

* displays the class average ﬂ
 frees the dynamic memory ‘

Dr Siba HAIDAR - Lebanese Un|ver5|ty 12204 n

i

Linked Lists

2. Linked Lists

59

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

Linked Lists

e useful for 2 reasons

— data structure used in real programs

— appreciation of time, space, code issues, useful to thinking about any
data structures in general

e great way to learn about pointers:

— problems are a nice combination of algorithms and pointer
manipulation

Why Linked Lists?

similar to arrays: both store collections of data
different strategies

arrays strategy:
1. entire array is allocated as one block of memory

2. direct access using [] syntax

linked lists strategy:

1. memory allocation for each element separately only when necessary
2. access is more complex

1.

2.

Disadvantages of Arrays

fixed size

— specified at compile time

— even if deferred until runtime,
after that it remains fixed

allocate "large enough”

— most of time 70% of space is

wasted

— if need more, code breaks

— ++ commercial codes

can allocate array in heap and then
dynamically resize it with real loc()

— OK but...

3. inserting new elements at the
front is expensive

— because existing elements need to
be shifted over to make room

array

1

Dr Siba HAIDAR -

2 3 99

Lebanese University - 12204

What Linked Lists Look Like

node: linked list element node definition

list gets its overall structure by struct node {

using pointers to connect all its int data; —
nodes together like links in a struct nodex next; Q
chain }; \

* each node
— allocated in heap with malloc()

each node contains 2 fields
— "data" field: store whatever

element type list holds for its — continues to exist until eXp|ICIt|y
client deallocated with free()

— "next" field: pointer to link one * front of list)
node to next node — a pointer to first node

Dr Siba HAIDAR - Lebanese University - 12204

Example : List {1, 2, 3}

* The overall list is built by connecting the nodes together by
their next pointers. The nodes are all allocated in the heap.

Memory State

Stack Heap

main

ST
head — data 1 data 2 data 3

next next next z

The Empty List — NULL

* empty list — list with zero nodes: NULL head pointer

— empty list case is "boundary case" for linked list code:

— good habit to remember to check empty list case to verify that it
works too Memory State

Stack Heap

main

head |Z

Linked Lists

3. Seven Code Techniques from Nick Parlante

B Dr Siba HAIDAR - Lebanese University - 12204

¢« C Y @ https//cs.stanford.ed... ¥t * i

Nick Parlante

'm a lecturer in the Stanford CS department. I'm teaching Stanford CS106A
Winter and Spring this year.

dere is Nick's Python Reference we're using for CS106A.
Curent research: extend online code practice technology to build a CS106A

with code exercises woven throughout lecture. The online-code-practice
‘ormat extends nicely to let people outside Stanford use the materials. Also

(orking on CS101 at Stanford, and in MOOC form: CS101 Online Class.

J

N

Linked List
Problems

Ey Nick Parlante Copyright ©1998-2002, Nick Parlante

Abstract

This document reviews basic linked list code techniques and then works through 18
linked list problems covering a wide range of difficulty. Most obviously. these problems
are a way to learn about linked lists. More importantly, these problems are a way to
develop your abxhtdy with complex pointer algorithms. Even though modern languages
and tools have made linked lists pretty unimportant for day-to-day programming, the
skills for complex pointer algorithms are very important, and linked lists are an excellent
way to develop those skills.

The problems use the C language syntax, so they require a basic understanding of Cand
its pointer syntax. The is on the pts of pointer and
linked list algorithms rather than the features of the C language.

For some of the problems we present such as i 1

dummy node vs. local reference. The specific problems are, in rough order of dlfﬁculty
Count, GetNth, DeleteList, Pop, InsertNth, SortedInsert, InsertSort, Append.
FrontBackSplit, RemoveDuplicates, MoveNode, AlternatingSplit, ShufﬂeMerge.
SortedMerge, SortedIntersect, Reverse, and RecursiveReverse.

TriTe calnts

Contents
Section 1 — Review of basic linked list code techniques, 3
Section 2 — 18 list problems in increasing order of difficulty. 10
Section 3 — Solutions to all the problems 20
This 1s document #105, Linked List Probl 1 the Stanford CS Edi Library

This and other free educational materials are available at hlm://cslibmry‘slanford.edu'l .
This document is free to be used, reproduced, or sold so long as this notice is clearly

reproduced at its beginning.

Related CS Educatlon Library Documents
Related Stanf library d

* Linked List Basics (http://cslibrary stanford.edu/103/)
Explains all the basic issues and techniques for building linked lists.
. Pomfcrs and Memory (http://cslibrary stanford.edu/102/)
Explains how pointers and memor{ work in C and other languages. Starts
\ut the very basics, and extends through advanced topics such as
and heap 2
* Binary Trecs (http://cslibrary stanford.edu/110/)
Introduction to binary trees
* Essential C (http://cslibrary stanford.edu/101/)
Explains the basic features of the C programming language.

DrSiba/HAIDAR - Lebanese University - 12204

1) Iterate Down a List

* iterate a pointer over all nodes in int length(struct nodex head) {

. . int count = 0;
a list, using a loop struct nodex current = head;

— copy head pointer into local while (current !'= NULL) {
variable count++;
* current = head current = current->next;
— test for end of list with }

* current != NULL return count;

. . }
— advance pointer with
Memory State
* current = current->next Stack Heap
head Ej data j data j data
next E_ next E—' next Z

Dr Siba HAIDAR - Lebanese University - 12204

1) Iterate Down a List

* iterate a pointer over all nodesin int length(struct nodex head) {

. . int count = 0;
a list, using a loop struct nodex current = head;

— copy head pointer into local while (current !'= NULL) {
variable count++;
* current current = current—->next;
— test for end of list with }

return(count);

e current != NULL)

— advance pointer with
* current = current->next
e for loop makes initialization, test, for (current = head;

and pointer advance harder to SUITTEE o= e
omit current = current->next)

count++;

Dr Siba HAIDAR - Lebanese University - 12204

emory state 1) Iterate Down a List

e jteration 1:

Memory State

Stack Heap
lengthTest length
/|
head -
head -—/_\/j data | 1 data | 2 data
current = next — next — next ‘
count 0

Dr Siba HAIDAR - Lebanese University - 12204

emory state 1) Iterate Down a List

e iteration 2:

Memory State

Stack Heap
lengthTest length
/|
head -
head -—/_\/ data | 1 data | 2 data
current — next — next — next ‘
count 1

Dr Siba HAIDAR - Lebanese University - 12204

emory state 1) Iterate Down a List

e jteration 3:

Memory State

Stack Heap
lengthTest length
/|
head -
head —_ | data | 1 data | 2 data
current — next — next — next ‘
count 2

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state

1) Iterate Down a List

* Stopping condition: current == NULL

Memory State

count 3

Stack Heap
lengthTest length
/|
head -
head -—/_\/ data | 1 data data
current Z next — next next ‘

Dr Siba HAIDAR - Lebanese University - 12204

2) Changing a Pointer With A Reference Pointer

* if functions need to change caller's void change2Null(nodex*x headRef) {
head pointer = pass pointer to head *xheadRef = NULL;
pointer: reference pointer L
— to change a nodex, pass a nodesxx void changeTest() {
_ use &in call nodex headl, *xhead2;
change2Null(&headl);
— lcjlig: ienvcaalllﬁe function to access and changeZNallg&headzg ;
g printf("%p %p\n", headl, head2);
+
Memory State

Stack

Heap
changeTest change2Null change2Null

headRef [::::] headRef [::::]

Dr Siba HAIDAR - Lebahese University - 12204

Special Application: List Building

e Best Solution

— independent function that adds a single new node to any list
— can call function as many times as we want to build up any list

e Classic 3-Step Link In

Operation

— adds a single node to the front of a linked list
— 3 steps = allocate & fill + link next + link head

- Push: add a node to
the head of the list

Memory State

Stack

Heap

head I:—]—j

dat

rg
nextE_

data

next

[

data

Dr Siba HAIDAR - Lebanese University - 12204

Push: add a node to the head of the list

* 3-Step Link In operation void Push (node xx headRef, int d){
1. allocate & fill: allocate the _
new node in the heap and // 1 - allocate & fill
set its .data to whatever node * newNode = (node %) malloc (sizeof (node));
needs to be stored newNode->data = d;
2. link next: set the .next pointer _
of the new node to point to // 2 - link next
the current first node of the newNode—>next = xheadRef;
list
3. link head: change the head _
pointer to point to the new // 3 - link head
node, so it is now the first *headRef = newNode;

node in the list

Push Animation

* Suppose we have void Push (node sk headRef, int d){

the list {1,2,3} and // 1 - allocate & fill

we want to push 0 node *x newNode = (node %) malloc (sizeof (node));
newNode->data = d;

to the head of the

list, so it becomes // 2 - link next

{0,1,2,3}. newNode->next = xheadRef;

// 3 — link head
xheadRef = newNode;

}

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state

Push Animation (1)

e Initial state: {1,2,3}

Memory State

Dy

Siba HAIDAR - Lebanese University - 12204

Stack Heap
PushTest
head — data 1 data data
next —_— next

next

e

memory state

Push Animation (2)

e Call Push (&head, 0) :

Memory State

Dy

Siba HAIDAR - Lebanese University - 12204

Stack Heap
PushTest Push
head — data 1 data data
headRef next —_— next next
d

e

memory state

Push Animation (3)

nodex newNode=(nodex)malloc(sizeof(node));

1 — allocate & T1ilLl: newNode->data = d;

Memory State

Stack Heap
PushTest Push
head — data 1 data 2 data 3
/
headRef next —_— next —] next A
d 0
1

newNode |
data 0
next

Di Siba HAIDAR - Lebanese Ukivarsity-12204

e

memory state

Push Animation (4)

e« 2 — Llink next: newNode—>next

Memory State

= xheadRef;

Dy

Siba HAIDAR - Lebanese Ukiversity

Stack Heap
PushTest Push
head — data 1 data 2 data 3
headRef next —_— next —] next A
d 0
1
newNode |
data 0
next

e

memmory state Push Animation (5)

« 3 — link head:xheadRef = newNode;

Memory State

Stack Heap
PushTest Push
head data 1 data 2 data
headRef next —_— next —] next
d 0
1
newNode |
data 0
next
Di Siba HAIDAR - Lebanese Ukivarsity-12204

e

memory state

Push Animation (6)

e final state: {0,1,2,3}

Memory State

Stack Heap
PushTest
head data 1 data data
next —_— next next
data 0
next
D1l Siba HAIDAR - Lebanese Ukiversity—12204

3) Build — At Head With Push()

« easiest way to build up a listis by ~ struct nodex AddAtHead() {
adding nodes at its "head end"

with Push() struct nodex head = NULL;
e code is short and runs fast: lists int i
naturally support operations at for (i=1: i<6: i++) {
head end Push(&head, i);
disadvantage: elements will }
appear in the list in reverse
order that they are added /715, 4, 3, 2, 1};
return head;
}

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state

3) Build — At Head With Push()

Memory State

Stack Heap
AddAtHead
head I data 5 data data 3
next | next next)
i 6
data data 1
next next Z

Dr Siba HAIDAR - Lebanese University - 12204

4) Build — With Tail Pointer

add nodes at "tail end" of list: locate
last node in list, and change its .next
field from NULL to point to new node

one exception is if node is first in list:

in that case head pointer itself must
be changed

* This is a special case of general rule
(insert or delete a node inside a list), for
this we need a pointer to node just
before that position, then we change its
.next field.

* Many list problems include the sub-
problem of advancing a pointer to node
before point of insertion or deletion.

for (current = head;
current && current->next;
current = current->next)
[/ e

e

memory state

4) Build — With Tail Pointer

example: add 4 toend of {1,2,3}

Memory State

Dy

Siba HAIDAR - Lebanese Ukiversity

Stack Heap
Add2TailTest Add2Tail
head — data 1 data data 3
headRef next —_— next next%
d 4______,_—””'
tail

data 4

newNode I
next

5) Build — Special Case + Tail Pointer

e build up list {1, 2, 3, 4, 5} by struct nodex BuildwWithSpecialCase(){
struct nodex head = NULL;

appending nodes to tail end
struct nodex tail;

* technique:

int 1i;
— every first node must be added at Push(&head, 1);
head pointer tail = head:
— all other nodes inserted after last for (i=2: i<6; i++) {
node using tail pointer Push(&(tail->next), i);
problem: writing separate tail = tail->next;
@ special case code for first node is Iy
unsatisfying // {1, 2, 3, 4, 5};
return head;

}

Dr Siba HAIDAR - Lebanese University - 12204

e

nemorystate. D) BUild — Special Case + Tail Pointer

Memory State

Stack Heap
BuildWithSpecialCase
head j data 1 data data 3
next | next next)i
data data 5
i 6
next next Z

Dr Siba HAIDAR - Lebanese University - 12204

6) Build — Dummy Node

. use temporary dummy node at struct nodex BuildWithDummyNode() {
struct node dummy;

dummy.next = NULL;
// Dummy node is temp. first node
struct nodex tail = &dummy;

head of list during computation

* trick with dummy: every node
appear to be added after .next

field of a node = code for first int i
node is same as for other nodes for (i=1; i<6; i++) {

* tail pointer plays same role as in Push(&(tail->next), i);
previous example, so it also tail = tail->next;
handles first node ;

return dummy.next;

Dr Siba HAIDAR - Lebanese University - 12204

21
meme 6) Build — Dummy Node

Memory State

Stack Heap
BuildWithDummyNode
dummy data 1 data 2 data 3
data
next] next — next J
next /

tail =

data 4 data 5

next S e next Z

Dr Siba HAIDAR - Lebanese University - 12204

6) Build — Dummy Node

Remarks: can keep dummy node permanent part of list

empty list is not represented by a NULL pointer
every list has dummy node at its head
algorithms skip over dummy node for all operations

heap allocated dummy node is always present to provide above sort
of convenience in code

dummy-in-the stack strategy, like the example in previous slide, is a
little unusual, but it avoids making the dummy permanent part of
list

7) Build — Local References

unify all node cases without using struct nodex BuildWithLocalRef() {
dummy node struct nodex head = NULL;

. struct nodexkx lastPtrRef= &head;
use a local reference pointer

which always points to last pointer

L int 1i;
in list instead of to last node for (i=l; i<6: i++) {
reference pointer starts off Push(lastPtrRef, i);
pointing to head pointer
additions to list are made by lastPtrRef= &((xlastPtrRef)->next);
following reference pointer
I3

later, it points to .next field

inside last node in list // head == 11, 2, 3, 4, 5}

return(head);

Dr Siba HAIDAR - Le:tanese University - 12204

e

memory state 7) Build — Local References

e initial state

Memory State

Stack Heap

BuildWithLocalRef

head

lastPtrRef \

DF Siba HAIDAR - Lebanese University - 12204

e

memory state 7) Build — Local References

e after first iteration ...

Memory State

Stack Heap
BuildWithLocalRef
head ———/ data 1
next
lastPtrRef e
i 1
DF Siba HAIDAR - Lebanese University - 12204

memory state 7) Build — Local References

* final state

Memory State

Stack Heap
BuildWithLocalRef

head __/ data 1 data 2 data

next —_— next — next

lastPtrRef ==
data 4 data
i 6
_/I
next — next
DF Siba HAIDAR - Lebanese Universiy—12204

7) Build — Local References

struct nodex BuildWithLocalRef() {
struct nodex head = NULL;
struct nodexkx lastPtrRef= &head;

int 1i;
for (i=1; i<6; i++) {
Push(lastPtrRef, i);

lastPtrRef= &((*klastPtrRef)—->next);

¥
// head == {1, 2, 3, 4, 5};
return(head);

Dr Siba HAIDAR - Le%anese University - 12204

Important Remark about Local References
node *xx ptrRef; // ...

L4

'@‘ Do not confuse 2 different syntaxes = VERY different behavior

xptrRef = (kptrRef)->next; ptrRef = &((xptrRef)->next);
(9
data data data head data data data
—
~ = e [(7 - 3 o [T s
= Ol P 3 |=~3A

Dr Siba HAIDAR - Lebanese University - 12204

Important Remark about Local References
node *xx ptrRef; // ...

L4

@‘ Do not confuse 2 different syntaxes = VERY different behavior

node *x tmp = xptrRef;

xptrRef = (xptrRef)->next; ptrRef = &((xptrRef)->next);
free(tmp);

L

eeeeeeeeeeeeeeeeeeeeee

SSSSSSSSSS

/;——\

(9/ V ~
head data data < data head data data data
E . Qn; :5 B /@

et [T e

w0 | |e=2] w0 | |
[T |=[A [T |3

Dr Siba HAIDAR - Lebanese University - 12204

Linked Lists

4. Operations over Linked Lists

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

Operations over Linked Lists

1. insertin the middle: insertNth,
insertSorted, insertAfter,
insertBefore, etc.

2. removeFirst

3. removelast StUdy

4. remove from the middle: ... "linked List Problems
5. deletelist

6. and many others by Nick Parlante”

* not to forget to free the
removed nodes

Example: InsertNth

* insert a new node at any index within a list

* may specify any index in the range [0..length], and the new
node should be inserted so as to be at that index

InsertNthTest()

void insertNthTest() {

// start with the empty list
struct nodex head = NULL;

insertNth(&head, 0, 13);// {13}
insertNth(&head, 1, 42);// {13, 42}
insertNth(&head, 1, 5); // {13, 5, 42}

deletelList(&head);
// clean up after ourselves

Dr Siba HAIDAR - Lebanese University - 12204

InsertNth()

void insertNth(struct nodexx headRef, int index, int data) {

if((index < @) || ((index > @) && (xheadRef == NULL)))
printf("\nError: insert canceled; index out of range.");

else if(index == 0) code technique #7
Push(headRef, data); //base case is Push

else
insertNth(&((xheadRef)->next), index-1, data);

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state Inse rtNth()

Example: on list {13,42}, call insertNth(&head,1,5) =2 {13,5,42}

Memory State

Stack Heap

insertNthTest

ead E//\/- N N

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state Inse rtNth()

Example: on list {13,42}, call insertNth(&head,1,5) =2 {13,5,42}

Memory State

Stack Heap

insertNthTest insertNth

QE/// \E | N N
headRef next next z

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state Inse rtNth()

Example: on list {13,42}, call insertNth(&head,1,5) =2 {13,5,42}

Memory State

Stack Heap
insertNthTest insertNth insertNth |
head E/ _ data |—|13 data
L~

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state Inse rtNth()

Example: on list {13,42}, call insertNth(&head,1,5) =2 {13,5,42}

Memory State

Stack Heap

insertNthTest insertNth insertNth Push

headRef | E | headRef E/ headRef / ne next z

next

Dr Siba HAIDAR - Lebanese University - 12204

e

memory state Inse rtNth()

Example: on list {13,42}, call insertNth(&head,1,5) =2 {13,5,42}

Memory State

Stack Heap

insertNthTest

ead E//\/- N N

==

Dr Siba HAIDAR - Lebanese University - 12204

Linked Lists

e 5. Linked Lists Variants

D\Tol}Tuh‘E -

Dr Siba HAIDAR - Lebanese University - 12204

Doubly Linked List (DLL)

* node definition * rethink Push and all the other
struct node { operations
int data; — insertNth
struct node *xprev, *next; — removeNode,
}; Memory State B etC
Stack Heap

next E—_ next E__ next I7

memory state Dr Siba HAIDAR - Lebanese University - 12204

Circular Linked List (CLL)

* |ast next field points to the first

node

* stopping condition must be
changed!

— use: do .. while

* rethink Push and all the other

operations
— insertNth
— removeNode,

— etc
Memory State

Stack

Heap

1"’

‘l
T ‘J

\\’ 'v &

&

data 1 data 2

next e next —_—

data

next

?@..

Dr Siba HAIDAR - Lebanese University - 12204

memory state

Other Linked Lists

1. Doubly Circular Linked List (DCLL),
2. Linked List with Random Pointer (RLL),

3. Next Course "Data Structures” : HashTables, Trees, Graphes,

Dr Siba HAIDAR - Lebanese University - 12204

Linked Lists

Local vs. Dynamic Memories: Stack & Heap
Linked Lists

Seven Code Techniques from Nick Parlante
Operations over Linked Lists

Linked Lists Variants

vk wbh e

Dr Siba HAIDAR - Lebanese University - 12204

