
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204 - Imperative Programming

Dr Siba Haidar

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Pointers and Arrays

Chapter 2

Chapter at a glance

• correct understanding and use of pointers is critical
– pointers provide the means by which functions can modify their

calling arguments
– pointers support dynamic allocation

• pointers are one of the strongest but also one of the most
dangerous features in C/C++

Dr Siba HAIDAR - Lebanese University - I2204

Chapter at a Glance

• pointers are challenging à need to know
– when to use a pointer
– when to dereference the pointer
– when to pass an address to a variable rather than the variable value
– when to use pointer arithmetic to change the pointer value
– how to use pointers without making your programs unreadable

• arrays in C are interesting because they are pointed to
– the variable that you declare for the array is actually a pointer to the first

array element
• intriguing features of pointers
– pointer arithmetic used for stepping through arrays rather than using array

indices

Dr Siba HAIDAR - Lebanese University - I2204

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

What Are Pointers?

• a pointer is a variable that holds
a memory address

• this address is the location of
another object (typically another
variable) in memory

• if one variable contains the
address of another variable à
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University - I2204

p

variables in
memory

1001

3x

1000

1001

1002

1003

1004

1005

1006

memory
address

...
Memory

What Are Pointers?

• a pointer is a variable that holds
a memory address

• this address is the location of
another object (typically another
variable) in memory

• if one variable contains the
address of another variable à
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University - I2204

p

variables in
memory

1001

3x

1000

1001

1002

1003

1004

1005

1006

memory
address

...
Memory

What Are Pointers?

• a pointer is a variable that holds
a memory address

• this address is the location of
another object (typically another
variable) in memory

• if one variable contains the
address of another variable à
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University - I2204

@p

variables in
memory

3x

Pointer Variables

• a pointer declaration consists of a base type, an asterix *, and the variable
name
type *name;

• examples
int * p;
char* q;

• technically
– any type of pointer can point anywhere in memory

• however
– all pointer arithmetic is done relative to its base type

• so
– it is important to declare the pointer correctly

Dr Siba HAIDAR - Lebanese University - I2204

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

The Pointer Operators

• 2 special pointer operators:
– addressing or referencing operator &
– dereference operator *

Dr Siba HAIDAR - Lebanese University - I2204

Addressing or Referencing Operator

• given a variable c of type T

• & is a unary operator that returns the
memory address of its operand

• m = &c;
– m receives the address of c
– m references c
– m points to c
– m is a pointer and c is its pointee

Dr Siba HAIDAR - Lebanese University - I2204

3c

m @

T c;
T *m;

Dereference Operator *

• applied to a pointer m of base type T,

• the unary operator * gives the value of
the object of type T pointed by m

• * is the complement of &
q = *m;
• dereference m and place its value in q
• retrieve m's pointee value (3) and put it in q

Dr Siba HAIDAR - Lebanese University - I2204

q

3c

m

3

@

Dereference Operator *

• applied to a pointer m of base type T,

• the unary operator * gives the value of
the object of type T pointed by m

• * is the complement of &
q = *m;
• dereference m and place its value in q
• retrieve m's pointee value (3) and put it in q

Dr Siba HAIDAR - Lebanese University - I2204

q

3c

m

3

@

3

Example: Importance of Base Type

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

int main(void){

double x= 100.1, y;

double *p;
p = &x;

y = *p;

printf("%.1lf\n", y);

return 0;

}

Example: Importance of Base Type: Altered!!

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

int main(void){

double x= 100.1, y;
/* The next statement causes p (which is an integer pointer)

to point to a double. */
int *p;
p = &x;
/* The next statement does not operate as expected. */
y = *p;

printf("%f\n", y);
/* won’t output 100.1 */

return 0;

}

Pointer Assignments

Dr Siba HAIDAR - Lebanese University - I2204

@@

#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;

}

3x

p1

p2

3y

p3

@

Pointer Assignments

Dr Siba HAIDAR - Lebanese University - I2204

3x

p1

p2

@@

#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;

}

@

18

3y

p3

Pointer Assignments

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;
printf("%d\n", *p1);
printf("%d\n", *p2);

printf("%p\n", p1);
printf("%p\n", p2);
printf("%p\n", &x);
printf("%d\n", x);

p3 = &y;
printf("%d\n", *p3);
printf("%p\n", p3);
printf("%p\n", &y);
return 0;

}

/* 5 locals: 2 intialised ints */
/* & 3 pointers to ints */
/* p1 points to x */
/* p2 receives p1’s value, both now point to x */
/* print the content of p1 */
/* print the content of p2 */

/* print the value of p1 */
/* print the value of p2 */
/* print the address of x */
/* print the value of x */

/* p3 points to y */
/* print the content of p3 */
/* print the value of p3 */
/* print the address of y */

use the %p format specifier

in printf() to display an

address in the format used

by the host computer

Pointer Assignments

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;
printf("%d\n", *p1);
printf("%d\n", *p2);

printf("%p\n", p1);
printf("%p\n", p2);
printf("%p\n", &x);
printf("%d\n", x);

p3 = &y;
printf("%d\n", *p3);
printf("%p\n", p3);
printf("%p\n", &y);
return 0;

}

3x

p1

p2

@@

@

3y

p3 @@

let’s code

Pointer Arithmetic

• only two arithmetic:
– addition (+)
– subtraction (-)

• example
– let p1 be an integer pointer with a current value of 2000
– assume integers are 2 bytes long
p1++; // p1 contains 2002, not 2001
– each time p1 is incremented, it will point to the next integer (base

type)
• the same is true of decrements

Dr Siba HAIDAR - Lebanese University - I2204

Pointer Arithmetic

• each time a pointer is
incremented, it points to the
memory location of the next
element of its base type

• each time it is decremented, it
points to the location of the
previous element

Dr Siba HAIDAR - Lebanese University - I2204

variables in
memory

3000

3001

3002

3003

3004

3005

3006

memory
address

...
Memory

ch

ch + 1

ch + 2

ch + 3

ch + 4

ch + 5

ch + 6

char *ch = 3000;

int *i = 3000;

Pointer Arithmetic

• each time a pointer is
incremented, it points to the
memory location of the next
element of its base type

• each time it is decremented, it
points to the location of the
previous element

Dr Siba HAIDAR - Lebanese University - I2204

variables in
memory

3000

3001

3002

3003

3004

3005

3006

memory
address

...
Memory

i

i + 1

i + 2

i + 3

Pointer Arithmetic

• may add or subtract integers to or from pointers
p1 = p1 + 12;

• may subtract one pointer from another in order to find the
number of objects of their base type that separate the two

n = p1 - p2;
• all other arithmetic operations are prohibited
– may not multiply or divide pointers
– may not add two pointers
– may not apply the bitwise operators to them
– may not add or subtract type float or double to or from pointers

Dr Siba HAIDAR - Lebanese University - I2204

NOTE: In pra
ctice, yo

u

are not t
o assign

 static

values to
 pointer

variables
.

This code is only
 used to

show you the
 memory

behavior.

Exercise

• Since in C language the actual values
of the size of different primitive
types depend on the
implementation,

• suppose the following table is true:

• continue the memory state for each
of the instructions:

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

int main(void){
int *p = 3000, *q;
double *r = 5000, *s;
char *t = 2000, *u;

q = p + 4;

s = r - 3;

u = t + 2;

return 0;
}

primitive
type

size in
bytes

double 8

int 4

char 1

Exercise

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

int main(void){
int *p = 3000, *q;
double *r = 5000, *s;
char *t = 2000, *u;

q = p + 4;

s = r - 3;

u = t + 2;

return 0;
} u

p 3000

q 3016

r 5000

s

t 2000

4976

2002

primitive
type

size in
bytes

double 8

int 4

char 1

Pointer Comparisons

• can compare two pointers in a
relational expression
if(p<q)

printf("p points to lower memory
than q\n");

• used when 2+ pointers point to a
common object, such as an array

• in previous exercise, the expressions
p < q à true
s >= r à false
t == u à false

Dr Siba HAIDAR - Lebanese University - I2204

u

p 3000

q 3016

r 5000

s

t 2000

4976

2002

Exercise

• draw the memory state at each line marked by *

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main() {

int a = 1;
int b = 2;
int c = 3;
int* p;
int* q; //*1
p = &a; //*2
q = &b; //*3
c = *p; //*4
p = q; //*5
*p = 13; //*6
printf("%d", *q);
return 0;

}

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

The NULL Pointer

• the constant NULL is a special
pointer value which encodes the
idea of "points to nothing"
– NULL is value 0x0 (zero hex)

• it is a runtime error to
dereference a NULL pointer

• NULL is usually drawn as a
diagonal line between the
corners of the pointer variable's
box...

Dr Siba HAIDAR - Lebanese University - I2204

p

The NULL Pointer

Always proceed with either one of 2 choices

1. pointer has pointee 2. pointer is NULL

Dr Siba HAIDAR - Lebanese University - I2204

pp

3x

@

! Never leave a pointer uninitialized !

Bad Pointer Example

• what happens at runtime when
the bad pointer is dereferenced?

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

void badPointer(){

int * p;

*p = 42;

}

int main(){

badPointer();

return 0;
}

?????p

Bad Pointer Example

• the bad code will compile fine, but at run-time, each
dereference with a bad pointer will corrupt memory in some
way

• the program will crash sooner or later

• it is up to the programmer to ensure that each pointer is
assigned a pointee before it is used

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: Swap function

• write a function "swap" which swaps the values of two
variables of type int
– you know now that you have to use pointers J
– so, do not forget to test whether a pointer is NULL before

dereferencing it!!

• write "swapTest" to test this function

Dr Siba HAIDAR - Lebanese University - I2204

let’s code

memory state

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

Recall for Arrays

• declare an array using [] following variable name
int x[5];

• array indices start at 0

• must include size in the [] unless you are also initializing
int x[] = {1, 2, 3, 4, 5};
int x[5] = {1, 2, 3, 4, 5};

• can size > = number of items being initialized
int x[7] = {1, 2, 3, 4, 5};

– remaining elements uninitialized

• access array elements using [] syntax, example:
x[2] = -3;

• arrays can be passed as parameters
– the type being received would be denoted as int x[]

void printArray(int x[], int size);

Dr Siba HAIDAR - Lebanese University - I2204

x 1 2 3 4 5 ? ?
0 1 2 3 4 5 6

-3

x 1 2 3 4 5
0 1 2 3 4

x ? ? ? ? ?
0 1 2 3 4

Pointers and Arrays

• pointers and arrays have a close
relationship

int x [5] = {1, 2, 3, 4, 5};
• a variable declared as an array of

some type acts as a pointer to that
type
– when used by itself à it points to

first element of array
int *p;
p = x;
• a pointer can be indexed like an

array name
– p set to the @ of 1st element in x
– example: access 3rd element in x

• what we have told you:

• the reality:

Dr Siba HAIDAR - Lebanese University - I2204

x 1 2 3 4 5
0 1 2 3 4

x @ 1 2 3 4 5
0 1 2 3 4

p @ x[2]
*(p + 2)
p[2]
*(x + 2)

= -3;

-3

Pointers and Arrays

• pointers and arrays have a close
relationship

int x [10] = {1, 2, 3, 4, 5};
int *p;
p = x;
• exactly same same?

– no
• an array variable is a constant

pointer
• difference à an array variable

cannot change its value
int c;
x = &c; //wrong
x++; //also wrong

• equivalent syntaxes

Dr Siba HAIDAR - Lebanese University - I2204

x @ 1 2 3 4 5
0 1 2 3 4

p @

p[i] ßà *(p + i)

&p[i] ßà p + i

x valu
e is

const
ant

p is f
ree to

chang
e its

value

Pointers and Arrays

• pointers and arrays have a close
relationship

int x [10] = {1, 2, 3, 4, 5};
int *p;
p = x;
• exactly same same?

– no
• an array variable is a constant

pointer
• difference à an array variable

cannot change its value
int c;
x = &c; //wrong
x++; //also wrong

Dr Siba HAIDAR - Lebanese University - I2204

x @ 1 2 3 4 5
0 1 2 3 4

p @

x valu
e is

const
ant

p is f
ree to

chang
e its

value

Iterating through the array

Suppose you want to add the value 1 to each of the elements
int x [] = {1, 2, 3, 4, 5}, *p = NULL, i, size = sizeof(x)/sizeof(int);

way 1: array syntax (usual way)
for (i = 0; i < size ; i++)

x[i]++;

way 2: pointer syntax (pointer arithmetic)
for (p = x; p < x + size; p++)

(*p)++;

Dr Siba HAIDAR - Lebanese University - I2204

x @ 1 2 3 4 5
0 1 2 3 4

p @

2 3 4 5 6
c

NOTE: Array Arithmetic

(*p)++;
– increments what p points to

*(p++);
– increments the pointer to point at the next array element and then

dereferences it to get the content
• what do each of these do?

*p++; ++*p++; *++p;

Dr Siba HAIDAR - Lebanese University - I2204

Operators Precedence in C
Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* &
sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<=
&= ^= |=

Right to left

Comma , Left to right

Dr Siba HAIDAR - Lebanese University - I2204

Exercise : * and ++
#include <stdio.h>
int main(){

int x[] = {1,2,3,4,5};
int *p = x;
printf("%d\n", *p++);
printf("%d\n", *++p);
printf("%d\n", ++*p);
for (p = x; p < x+5; p++)

printf("%d ", *p);
printf("\n");
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

x @ 1 2 3 4 5
0 1 2 3 4

p @

4

1

3

4

1 2 4 4 5

Example: putstr() function
writes a string to the standard output
device, one character at a time

void putstr(char s[]) {
/* index s as an array */
for(int t=0; s[t]; ++t)
putchar(s[t]);

}

another way to write the same thing

void putstr(char *s){
/* access s as a pointer */
while(*s)

putchar(*s++);
}

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: continue …
#include <stdio.h>

int main(){
int x[4] = {12, 20, 39, 43}, *y;
y = &x[0];
printf("%d\n", x[0]);
printf("%d\n", *y);
printf("%d\n", *y+1);
printf("%d\n", (*y)+1);
printf("%d\n", *(y+1));
y+=2;
printf("%d\n", *y);
*y = 38;
printf("%d\n", *y-1);
printf("%d\n", *y++);
printf("%d\n", *y);
(*y)++;
printf("%d\n", *y);
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

x @ 12 20 39 43
0 1 2 3

y @

Passing Arrays

• when declaring parameters to functions
– declaring an array variable without a size is equivalent to declaring a

pointer
– what is being passed is a pointer to the array

• in the formal parameter list, you can either specify the
parameter as an array or a pointer

• often this is done to emphasize the fact that the pointer
variable will be used in a manner equivalent to an array

Dr Siba HAIDAR - Lebanese University - I2204

Exercise : arrySum

• write a function arraySum which
returns the sum of a given array
of integers

Dr Siba HAIDAR - Lebanese University - I2204

let’s code

memory state

#include <stdio.h>
int arraySum(int *a, int size){

int s = 0;
for(; size > 0 ; size-- , a++)

s += *a;
return s;

}

void arraySumTest(){
int x[]={12,23,34,45},
size = 4;
printf("the sum is : %d\n", arraySum(x,size));

}

int main(){
arraySumTest();
return 0;

}

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

C - Strings

• there is no String type in C, you have 2

choices:

– implement strings as arrays of chars with

the last byte '\0’

• char str[10]; // to be filled later either using

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly
initialized

• char message [100] = "Hi"; //simpler

or

– declare initialized strings using char

pointers:

• char *name = "Eva H."; //array of 7 chars
(including implied '\0’)

• use static const char *name = " Eva H."; if
string is constant

Dr Siba HAIDAR - Lebanese University - I2204

str ? ? ? ?
0 1 2 . . . 9

flower 'T' 'u' 'l' 'i' 'p' '\0'
0 1 2 3 4 5

message 'H' 'i' '\0' ? ?
0 1 2 3 . . . 99

name 'E' 'v' 'a' ' ' 'H' '.' '\0'
0 1 2 3 4 5 6

C - Strings

• there is no String type in C, you have 2

choices:

– implement strings as arrays of chars with

the last byte '\0’

• char str[10]; // to be filled later either using

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly
initialized

• char message [100] = "Hi"; //simpler

or

– declare initialized strings using char

pointers:

• char *name = "Eva H."; //array of 7 chars
(including implied '\0’)

• use static const char *name = "Eva H."; if
string is constant

Dr Siba HAIDAR - Lebanese University - I2204

elements are constants

elements are variable

C - Strings

• there is no String type in C, you have 2

choices:

– implement strings as arrays of chars with

the last byte '\0’

• char str[10]; // to be filled later either using

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly
initialized

• char message [100] = "Hi"; //simpler

or

– declare initialized strings using char

pointers:

• char *name = "Eva H."; //array of 7 chars
(including implied '\0’)

• use static const char *name = "Eva H."; if
string is constant

Dr Siba HAIDAR - Lebanese University - I2204

pointer is constant

pointer is variable

C - Strings

• there is no String type in C, you have 2

choices:

– implement strings as arrays of chars with

the last byte '\0’

• char str[10]; // to be filled later either using

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly
initialized

• char message [100] = "Hi"; //simpler

or

– declare initialized strings using char

pointers:

• char *name = "Eva H."; //array of 7 chars
(including implied '\0’)

• use static const char *name = "Eva H."; if
string is constant

Dr Siba HAIDAR - Lebanese University - I2204

pointer is constant

pointer is constant
& array is static (shared)

Array of char vs. char Pointer

Dr Siba HAIDAR - Lebanese University - I2204

array of char char pointer
declaration +

initialisation char tabStr [8] = "hello"; char * ptrStr = "hello";

effect of
initialisation

equivalent to
char tabStr [8] = {'h','e','l','l','o','\0'};

compiler creates string constant and assigns the
@ of first element to pointer

elements
alteration tabStr[2]='j'; //hejlo ptrStr[2]='j'; //RE: BA

pointer
alteration

char tab[8];
tabStr=tab; //CE: NA
char *ptr="lol";
tabStr=ptr; //CE: NA

char *ptr2="kifak";
ptrStr=ptr2;
puts(ptrStr); //kifak
ptrStr=tabStr;
puts(ptrStr); //hello

can can change content of tabStr if not exceed
7 characters

can change value of ptrPtr to point to another
string

cannot cannot change address of array cannot change content of chain initially created

• CE: compilation error
• NA: Array type char[8] is not assignable

• RE: runtime error
• BA: bad access

Demo

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(){

//char tabStr [8] = "hello";
char tabStr [8] = {'h','e','l','l','o','\0'};
tabStr[2]='j'; //hejlo
char tab[8];
//tabStr=tab; //compilation error: Array type char[8] is not assignable
char *ptr="lol";
//tabStr=ptr; // compilation error: Array type char[8] is not assignable

char * ptrStr = "hello";
//ptrStr[2]='j'; //runtime error: Thread 1: EXC_BAD_ACCESS
char *ptr2="kifak";
ptrStr=ptr2;
puts(ptrStr); //kifak
ptrStr=tabStr;
puts(ptrStr); //hello

return 0;
}

let’s try

How do I decide which choice I opt for?

Answer:
1. declare an array of char: char s[somesize] inside function bodies

when you need to edit the elements of s: read from keyboard and
fill, or concatenate, or copy from another string, or append etc.

2. declare a pointer to char: char* s as function parameters, and
when declaring constant strings (in this latter case you should
directly initialize).

Dr Siba HAIDAR - Lebanese University - I2204

Long Strings

Dr Siba HAIDAR - Lebanese University - I2204

• initialization of long string can be split across lines of source
code as follows:
static const char *longStr = "My name is Rudolph and I "

"work as a reindeer around Christmas time "
"up at the North Pole. My boss is a swell "
"guy. He likes to give everybody gifts.";

string.h

Dr Siba HAIDAR - Lebanese University - I2204

• string.h library with numerous string functions:
strcpy (s1, s2) copies s2 into s1 (including ‘\0’ as last char)
strncpy (s1, s2, n) same but only copies up to n chars of s2

strcmp (s1, s2) returns a negative int if s1 < s2, 0 if s1 = = s2 and a positive int if s1 > s2

strncmp (s1, s2, n) same but only compares up to n chars
strcat (s1, s2) concatenates s2 onto s1 (this changes s1, but not s2)
strncat (s1, s2, n) same but only concatenates up to n chars
strlen (s1) returns the integer length of s1

strchr (s1, ch) return a pointer to the first occurrence of ch in s1 (or NULL if ch is not present)

strrchr (s1, ch) same but the pointer points to the last occurrence of ch

strpbrk (s1, s2) return a pointer to the first occurrence of any character in s1 that matches a
character in s2 (or NULL if none are present)

strstr (s1, s2) substring, return a pointer to the char in s1 that starts a substring that matches
s2, or NULL if the substring is not present

Demo

Dr Siba HAIDAR - Lebanese University - I2204

#include <string.h>
#include <stdio.h>
int main(void){

char s1[80], s2[80];
fgets(s1,80, stdin);
fgets(s2,80, stdin);
//print them
printf("s1: \"%s\" its lengths: %lu\n", s1, strlen(s1));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));
//remove the 'enter' from their ends
//by moving the null char backward one place
s1[strlen(s1)-1] = '\0';
s2[strlen(s2)-1] = '\0';
printf("s1: \"%s\" its lengths: %lu\n", s1, strlen(s1));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));

//compare using strcmp: dictionary order
int comp = strcmp(s1, s2);
int answer = (comp == 0)? 0 : (comp < 0)? -1 : 1;
switch(answer){

case 0: printf("The strings are equal\n"); break;
case -1: printf("s1 < s2 in dictionary order\n"); break;
default: printf("s1 > s2 in dictionary order\n"); break;

}
strcat(s1, s2); printf("%s\n", s1);
strcpy(s1, "Full Replacement ;)\n"); printf("%s", s1);
if(strchr("hello", 'e')) printf("the letter \'e\' is in the string \"hello\".\n");
if(strstr("hi there", "hi")) printf("the string \"hi\" is in the string \"hi there\".\n");
return 0;

}

hello my dear students!
how are you?
s1: "hello my dear students!
" its lengths: 24
s2: "how are you?
" its lengths: 13
s1: "hello my dear students!" its lengths: 23
s2: "how are you?" its lengths: 12
s1 < s2 in dictionary order
hello my dear students!how are you?
Full Replacement ;)
the letter 'e' is in the string "hello".
the string "hi" is in the string "hi there".
Program ended with exit code: 0

let’s try

Implementing Some Functions of string.h

Dr Siba HAIDAR - Lebanese University - I2204

int strlen(char *s) {
int n;
for(n = 0; *s != '\0'; s++)

n++;
return n;

}

void strcpy(char *s, char *t){
while((*s = *t) != '\0'){

s++;
t++;

}
}

void strcpy(char *s, char *t){
while((*s++ = *t++) != '\0');

}

void strcpy(char *s, char *t){
int i = 0;
while((s[i] = t[i]) != '\0')

i++;
}int strcmp(char *s, char *t){

int i;
for(i = 0; s[i] == t[i]; i++)

if (s[i] == '\0')
return 0;

return s[i] – t[i];
}

The conciseness of the last strcmp and strcpy
make them hard to understand.

int strcmp(char *s, char *t){
for(; *s == *t ; s++ , t++)

if (*s == '\0')
return 0;

return *s - *t;
}

while(!(succeed = try()));

Dr Siba HAIDAR - Lebanese University - I2204

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

Multidimensional Arrays

• C supports multidimensional
arrays
– simplest form is 2Darray

• a 2D array is an array of 1D
arrays
– general form declaration:

• type array_name[dim2][dim1];
– int t[3][4];

• array of 3 elements, where each
element is an array of 4 int

• in a function parameter list, and
because functions can be
compiled separately
– must denote all but one dimension

of a multiple dimensional array
– void afunction(int t[][4], int size);

• arrays are referenced through
pointers
– multiple ways to declare and

access 2D arrays
– more relevant when dealing with

an array of strings

Dr Siba HAIDAR - Lebanese University - I2204

Example : Fill 2D Array

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(void)
{

int t[3][4], i, j;

/* fill 2D array 2 embedded loops */
for(i=0; i<3; ++i)

for(j=0; j<4; ++j)
t[i][j] = (i * 4 + j + 1) * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}

0 1 2 0 1 2 3 0 1 2 3 0 1 2 3

t 2 4 6 8 10 12 14 16 18 20 22 24
0 1 2 3 4 5 6 7 8 9 10 11

Multidimensional Arrays

int t[3][4] = {2,4,6,8,10,12,14,16,18,20,22,24};

• what you might think t is:

• what t looks like:

let's evaluate:
t[1][2]

14
*t[1]

10
**(t+2)

18
((t+2)+1)

20

Dr Siba HAIDAR - Lebanese University - I2204

p[i] ßà *(p + i)
&p[i] ßà p + i

Recall 0 1 2 3

t 0 2 4 6 8
1 10 12 14 16
2 18 20 22 24

#include <stdio.h>
int main(void)
{

int t[3][4], i, j;

/* fill 2D array 2 embedded loops */
for(i=0; i<3; ++i)

for(j=0; j<4; ++j)
t[i][j] = (i * 4 + j + 1) * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}

Example : Fill 2D Array

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(void)
{

int t[3][4], *p=NULL, v, i, j;

/* fill 2D array with 1 loop */
for(p = *t, v=1; p < *t + 12; p++, v++)

*p = v * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}

Revisited

0 1 2

a

x 1 2
0 1

y 3 4 5
0 1 2

z 6 7 8 9
0 1 2 3

Array of Pointers
#include <stdio.h>
int main(void){
int *a[3];//array of 3 pointers
int x[2] = {1, 2};
int y[3] = {3, 4, 5};
int z[4] = {6, 7, 8, 9};
a[0] = x; // a[0] points to x[0]
a[1] = y; // a[1] points to y[0]
a[2] = z; // a[2] points to z[0]
//a is a jagged array
printf("%d ", a[1][2]);//5
printf("%d ", a[0][2]);//garbage value
printf("%d ", *(*(a+2)+1));//7
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

Arrays of Strings

• implement an array of strings as a 2D array of chars?
– char names[120][50];

• disadvantages
– all 120 strings will be 50 chars long

Dr Siba HAIDAR - Lebanese University - I2204

Example: Arrays of Strings

Dr Siba HAIDAR - Lebanese University - I2204

counting the ' \0'

#include <stdio.h>
int main(void)
{

char * x[] = {"hello", "goodbye",
"so long", "thanks for all the fish"};

int i;
for(i=0;i<4;i++)

puts(x[i]);
printf("%lu\n", sizeof(x)/sizeof(char));
return 0;

}

Example: Arrays of Strings

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
int main(void)
{

char x[][24] = {"hello", "goodbye",
"so long", "thanks for all the fish"};

int i;
for(i=0;i<4;i++)

puts(x[i]);
printf("%lu\n", sizeof(x)/sizeof(char));
return 0;

}

Pointers to Pointer

• We have seen that we can have an array of arrays which is
really an array of pointers or a pointer to pointers.

• We may wish to use pointers to pointers outside of arrays as
well.

Dr Siba HAIDAR - Lebanese University - I2204

Multiple Indirection

• can have a pointer point to
another pointer that points to

the target value

• single indirection:

• multiple indirection:

Dr Siba HAIDAR - Lebanese University - I2204

px x

ref px x
to access target value,
apply asterisk operator
twice

Example: Multiple Indirection
#include <stdio.h>
int main(void){

int x = 10;
int * px = &x;
int ** ref = &px;

*px = 20;

**ref = 30;

printf("x = %d\n", x);

return 0;
}

Dr Siba HAIDAR - Lebanese University - I2204

ref px xref px xref px x 102030

x = 30

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

Void Pointers (void *)

• C supports the "pointer to void" type (void *).

• Variables of this type are pointers to data of

an unspecified type. In this context, void acts as a universal

type.

• A program can convert a pointer to any type of data (int *,

char *, …) to a pointer to void (void *) and back to the

original type without losing information.

Dr Siba HAIDAR - Lebanese University - I2204

Example: void *
#include <stdio.h>
int main(void){

int x=2, x2, *px;
float y=2.1f, y2, *py;
void *p;
//can point to any variable of any type

p=&x;
//to dereference p must cast first
printf("%d\t\t",*(int *)p);
x2=*(int *)p;
printf("%d\t\t",x2);

//to assign value of p
//to another pointer
//also must cast first
px=(int *)p;
printf("%d\n",*px);

//same with float
p=&y;
printf("%.1f\t\t",*(float *)p);
y2=*(float *)p;
printf("%.1f\t\t",y2);
py=(float *)p;
printf("%.1f\n",*py);

return 0;
}

Dr Siba HAIDAR - Lebanese University - I2204

1. Pointer Definition
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers

Dr Siba HAIDAR - Lebanese University - I2204

Pointers and Arrays

