Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

12204 - Imperative Programming

Lebanese University
Faculty of Science

BS Computer Science
2nd Year - S3

Pointers and Arrays

Chapter at a glance

* correct understanding and use of pointers is critical

— pointers provide the means by which functions can modify their
calling arguments

— pointers support dynamic allocation

* pointers are one of the strongest but also one of the most
dangerous features in C/C++

Chapter at a Glance

 pointers are challenging 2 need to know
— when to use a pointer
— when to dereference the pointer
— when to pass an address to a variable rather than the variable value
— when to use pointer arithmetic to change the pointer value
— how to use pointers without making your programs unreadable

e arrays in C are interesting because they are pointed to

— the variable that you declare for the array is actually a pointer to the first
array element

* intriguing features of pointers

— pointer arithmetic used for stepping through arrays rather than using array
indices

Pointers and Arrays

1. Pointer Definition

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

What Are Pointers?

e apointer is a variable that holds
a memory address

 this address is the location of
another object (typically another
variable) in memory

* if one variable contains the
address of another variable 2
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University - 12204

memory variables in
address memory

100

1001
X 3

1002

1003
p| 1001

1004

1005

1006

Memory

What Are Pointers?

e apointer is a variable that holds
a memory address

 this address is the location of
another object (typically another
variable) in memory

* if one variable contains the
address of another variable 2
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University - 12204

memory variables in
address memory

100

1002

mp~\\nm1

1004

1005

1006

Memory

What Are Pointers?

e apointer is a variable that holds
a memory address

 this address is the location of
another object (typically another
variable) in memory

* if one variable contains the
address of another variable 2
"the first variable points to the
second"

Dr Siba HAIDAR - Lebanese University -

variables in
memory

12204

Pointer Variables

a pointer declaration consists of a base type, an asterix *, and the variable
name

type *name;
examples

int * p;

char* qg;

technically

— any type of pointer can point anywhere in memory
however

— all pointer arithmetic is done relative to its base type
SO

— it is important to declare the pointer correctly

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

2. Pointer Operations

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

The Pointer Operators

* 2 special pointer operators:

— addressing or referencing operator &
— dereference operator *

Addressing or Referencing Operator

e given a variable c of type T
Tc;

T *m; C 3

* & isaunary operator that returns the
memory address of its operand

* m=&¢;
— m receives the address of c
— m references c
— m pointsto c
— m is a pointer and c is its pointee

Dr Siba HAIDAR - Lebanese University - 12204

Dereference Operator *

e applied to a pointer m of base type T,

C
* the unary operator * gives the value of
the object of type T pointed by m

* *isthe complement of &
q="*m; q
» dereference m and place its value in q
* retrieve m's pointee value (3) and putitin g

Dr Siba HAIDAR - Lebanese University - 12204

Dereference Operator *

e applied to a pointer m of base type T,

C
* the unary operator * gives the value of
the object of type T pointed by m

* *isthe complement of &
q="*m; q
» dereference m and place its value in q
* retrieve m's pointee value (3) and putitin g

Dr Siba HAIDAR - Lebanese University - 12204

Example: Importance of Base Type

#include <stdio.h>
int main(void){

double x= 100.1, vy;

double xp;
p = &X;
y = *p;

printf("%.11f\n", vy);

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Example: Importance of Base Type: Altered!!

#include <stdio.h>
int main(void){
double x= 100.1, vy;

/* The next statement causes p (which is an integer pointer)
to point to a double. */

int xp;
p = &X;
/* The next statement does not operate as expected. */
y = *xp;

printf("sf\n", y);
/* won’t output 100.1 */

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Pointer Assignments

#include <stdio.h>

int main(void){ X
int x =3, y = 3;
int xpl, *p2, *p3;

pl = &x;
p2 = pl; pl
p2
y
p3

Dr Siba HAIDAR - Lebanese University - 12204

®

Pointer Assignments

#include <stdio.h>
int main(void){
int x =3, y = 3;
int xpl, *p2, *p3;
pl = &x;
p2 = pl;

Dr Siba HAIDAR

p3

- Lebanese University - 12204

®

18

Pointer Assignments

#include <stdio.h>
int main(void){

int x =3, y = 3;
int xpl, *p2, *p3;
pl = &x;

p2 = pl;
printf("%d\n", *xpl);
printf("%d\n", *p2);
printf("sp\n", pl);
printf("sp\n", p2);
printf("sp\n", &x);
printf("sd\n", x);
p3 = &y;
printf("%sd\n", *p3);
printf("sp\n", p3);
printf("sp\n", &y);

return 0;

/* 5 locals:
/*

/*

VES

/* print the
/* print the
/* print the
/* print the
/* print the
/* print the
/* p3 points
/* print the
/* print the
/* print the

2 intialised ints x/

& 3 pointers to ints *x/
pl points to x *x/
p2 receives pl’s value, both now point to x */

content of pl x/
content of p2 x/

value of pl x/

value of p2 *x/ tSpecﬁ\ef
address of x x/ Jse th 0/\ofod play a0
value of x */ 0 prin ntf() tO forma sed
to y */ add‘ess o ompute
content of p3 *x/ bythe

value of p3 x/
address of y x/

Dr Siba HAIDAR - Lebanese University - 12204

Pointer Assignments

let’s code

#include <stdio.h>
int main(void){ X 3
int x =3, y = 3;
int xpl, *p2, *p3;
pl = &x;
p2 = pl; pl
printf("%sd\n", xpl);
printf("%sd\n", *p2);

o
N
®

printf("sp\n", pl);
printf("sp\n", p2);
printf("sp\n", &x);

printf("sd\n", x); Yy 3
p3 = &y;

printf("sd\n", *p3);

printf("sp\n", p3); p3 \@
printf("%sp\n", &y);

return 0;

} Dr Siba HAIDAR - Lebanese University - 12204

Pointer Arithmetic

* only two arithmetic:
— addition (+)
— subtraction (-)
e example
— let p1 be an integer pointer with a current value of 2000
— assume integers are 2 bytes long
pl++; // pl contains 2002, not 2001
— each time p1 is incremented, it will point to the next integer (base
type)
* the same is true of decrements

Pointer Arithmetic

memory variables in
address memory

* each time a pointer is ch 5 3000
incremented, it points to the
memory location of the next ch+1 ——m—03s 3001

element of its base type ch+2 300

* each time it is decremented, it
points to the location of the
previous element ch+ 4 —— 5 300

ch+3 _—— 35 3003

char xch = 3000: ch + 6 ——_ 5 3005

int xi = 3000; ch + &6 —_ 3§ 3006

Dr Siba HAIDAR - Lebanese University - 12204 Memory

Pointer Arithmetic

memory variables in
. . . address memory
e each time a pointer is
incremented, it points to the P —
memory location of the next 3001

element of its base type

3000

3002

L . L+ 1

* each time it is decremented, it Lri—
points to the location of the

previous element

3003

300
P+ 22— N

3005

3006

Dr Siba HAIDAR - Lebanese University - 12204 I\/Iemor'y

Pointer Arithmetic

may add or subtract integers to or from pointers
pl=pl+12;

may subtract one pointer from another in order to find the

number of objects of their base type that separate the two
n=pl-p2;

all other arithmetic operations are prohibited

— may not multiply or divide pointers

— may not add two pointers

— may not apply the bitwise operators to them

— may not add or subtract type float or double to or from pointers

Exercise

#lé‘#mﬁqe nCJ g?gdqf%ge the actual values

size O rent primitive
types depend on the
iniMplementation,
* subyose thepfelldddhg table is true:

double *r 5000, *s;
char *t 2000, *u;

Ce;
qa=p+4; GoTE: 1"{5‘;65‘9"‘ skl

S =r - 3; yolues ¥ At
vauabL S:?— s only u'se;j
t + 2; is €O memot
+ This ou the

. the memo @?@xfor each
1 oerI‘we instructions: hi

Dr Siba HAIDAR - Lebanese University - 12204

primitive sizein

type bytes
double 8
int 4
char 1

Exercise

#include <stdio.h>
p 3000
int main(void){
int *p = 3000, xq; q 3016
double *r = 5000, *s; primitive sizein
char xt = 2000, xu; r 5000 type bytes
q=p + 4 double 8
S 4976 _
S =r - 3; int 4
U=t o+ 2 t 2000 char 1
t ’
} return 0 u 2002

Dr Siba HAIDAR - Lebanese University - 12204

Pointer Comparisons

can compare two pointersin a
relational expression
if(p<a)
printf("p points to lower memory
than g\n");

used when 2+ pointers point to a
common object, such as an array

in previous exercise, the expressions
p<q->true
s >=r - false
t == u > false

p
q

r

3000

3016

5000

4976

2000

2002

Dr Siba HAIDAR - Lebanese University - 12204

Exercise

e draw the memory state at each line marked by *

#include <stdio.h>
int main() {
int a
int b
int ¢
intx p;
intx q; //*1
p = &a; //*2
qg = &b; //*3
C xp; //*4
p q; //*5
*p = 13; //*6
printf("%d", xq);
return 0;

1;
2;
3;

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

3. The NULL Pointer

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

The NULL Pointer

* the constant NULL is a special NULL is usually drawn as a
pointer value which encodes the diagonal line between the
idea of "points to nothing" corners of the pointer variable's
— NULL is value 0x0 (zero hex) box...

* itisaruntime error to p M

dereference a NULL pointer

Dr Siba HAIDAR - Lebanese University - 12204

The NULL Pointer

Always proceed with either one of 2 choices

pointer has pointee 2. pointeris NULL

p | @ PM

I Never leave a pointer uninitialized !

Dr Siba HAIDAR - Lebanese University - 12204

Bad Pointer Example

¥iRgh&tchapisefis bt runtime when

the bad pointer is dereferenced?
void badPointer(){

int x p;

*p = 42; o [k

int main(){

badPointer();

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Bad Pointer Example

* the bad code will compile fine, but at run-time, each
dereference with a bad pointer will corrupt memory in some
way

* the program will crash sooner or later

* itis up to the programmer to ensure that each pointer is
assigned a pointee before it is used

Exercise: Swap function

e write a function "swap" which swaps the values of two
variables of type int

— you know now that you have to use pointers ©

— 50, do not forget to test whether a pointer is NULL before
dereferencing it!!

* write "swapTest" to test this function

let’s code

e

memory state

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

4. Arrays as Pointers

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

Recall for Arrays

declare an array using [] following variable name

int x[5]; x| ?
array indices start at 0 0
must include size in the [] unless you are also initializing x| 1
int x[1 = {1, 2, 3, 4, 5}; 0
int x[5] = {1, 2, 3, 4, 5};
can size > = number of items being initialized
int x[7] = {1, 2, 3, 4, 5}; x| 1 2 | 3
— remaining elements uninitialized 0 1 2

access array elements using [] syntax, example:
x[2] = -3;
arrays can be passed as parameters
— the type being received would be denoted as int x[]
void printArray(int x[], int size);

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

* pointers and arrays have a close * what we have told you:
relationship

int x [5] = {1; 2; 3; 4, 5};

* avariable declared as an array of x| 1 2 e
some type acts as a pointer to that 0 1 2
type

— when used by itself = it points to
first element of array * the reality:

int *p;

P = X;

* a pointer can be indexed like an S 1 2 i
array name v ! :

— p set to the @ of 15t element in x o[& x[2]

— example: access 3™ element in x *(p + 2)
pl2]
*(x + 2)

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

* pointers and arrays have a close

relationship
int x [10] = {1, 2, 3,
int xp;
p = X;
* exactly same same?
— NO

4, 5};

* an array variable is a constant

pointer

 difference = an array variable

cannot change its value
int c;
X = &c; //wrong
X4+ //also wrong

Dr Siba HAIDAR -

* equivalent syntaxes

plil] <> *(p + 1)
&pli] <> p + i
e
yue
< :\;t\s“’““‘t
x| @ 1 3 4
0 1 2 3

Lebanese University - 12204

Pointers and Arrays

pointers and arrays have a close

relationship
e
. . G0l ¢
an array variable is a constant * st
pointer <

Dr Siba HAIDAR - Lebanese University - 12204

Iterating through the array

Suppose you want to add the value 1 to each of the elements
int x [1 = {1, 2, 3, 4, 5}, *p = NULL, i, size = sizeof(x)/sizeof(int);

way 1: array syntax (usual way) way 2: pointer syntax (pointer arithmetic)
for (i = 0; i < size ; i++) for (p = X; p < X + size; p++)
x[i]++; (kp)++;

a1 5 |[6

Dr Siba HAIDAR - Lebanese University - 12204

NOTE: Array Arithmetic

(xp)++;
— increments what p points to
x(p++);

— increments the pointer to point at the next array element and then
dereferences it to get the content

e what do each of these do?
Xp++; ++kp++; *++p;

Operators Precedence in C

Category Operator Associativity
Postfix O[->.++-- Left to right
Unary +- 1~ ++-- (type)* & Right to left
sizeof
Multiplicative *[% Left to right
Additive +- Left to right
Shift <<>> Left to right
Relational <<=>>= Left to right
Equality === Left to right
Bitwise AND & Left to right
Bitwise XOR A Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR | Left to right
Conditional ?: Right to left
Assignment =+=-=*= [= %h=>>=<<= Right to left
&="=|=
Comma , Left to right

Dr Siba HAIDAR - Lebanese University - 12204

Exercise : * and ++

#include <stdio.h>

int main(){ 1
3
int x[] = {1,2,3,4,5}; 4
int xp = X;
printf("sd\n", *xp++); 12445

printf("%sd\n", x++p);
printf("sd\n", ++xp);
for (p = X; p < x+5; p++) /N

&
\

S
S

printf("%sd ", *p);

printf("\n"); //////' 0

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Example: putstr() function

writes a string to the standard output another way to write the same thing
device, one character at a time

void putstr(char s[]1) { void putstr(char *s){
/* index s as an array x/ /* access s as a pointer *x/
for(int t=0; s[t]; ++t) while(x*s)
putchar(s[t]); putchar (ks++);

¥ ¥

Dr Siba HAIDAR - Lebanese University - 12204

#include <stdio.h>

int main(){

int x[4] = {12,

y = &[0];
printf("sd\n",
printf("%d\n",
printf("%d\n",
printf("%d\n",
printf("%d\n",
y+=2;
printf("%sd\n",
xy = 38;
printf("sd\n",
printf("%sd\n",
printf("sd\n",
(ky)++;
printf("sd\n",
return 0;

~ e~~~

Exercise: continue ...

20, 39, 43}, xy;

x[01);
*xy) ;
xy+1) ;
(xy)+1);
*(y+1));

Dr Siba HAIDAR - Lebanese University - 12204

e

12

20

39

43

@

Passing Arrays

when declaring parameters to functions

— declaring an array variable without a size is equivalent to declaring a
pointer

— what is being passed is a pointer to the array

in the formal parameter list, you can either specify the
parameter as an array or a pointer

often this is done to emphasize the fact that the pointer
variable will be used in a manner equivalent to an array

Exercise : arrySum

. . . #include <stdio.h>
* write a function arraySum which int arraysun(int *a, int size){
. int s = 0;
returns the sum of a given array for(; size > 0 ; size— , a++)
S += xa;

of integers return s;
¥ let’s code

void arraySumTest(){
int x[]1={12,23,34,45},
size = 4;
printf("the sum is : %d\n", arraySum(x,size));

}

int main(){
arraySumTest();
return 0;

memory state

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

5. Strings versus Arrays of Characters

Dr Siba HAIDAR - Lebanese University - 12204

C - Strings

there is no String type in C, you have 2
choices: str
— implement strings as arrays of chars with
the last byte '\0’
* char str[10]; // to be filled later either using
strcpy or 1-by-1
e char flower[]={'T",'u’,'",'"i",'p","\0'}; //directly flower
initialized
* char message [100] = "Hi"; //simpler

or message

— declare initialized strings using char
pointers:

e char *name ="Eva H."; //array of 7 chars name
(including implied "\0’)

/ ? ? ?
7} 2 9
/" \
/ ITI I'LI Ipl I\@I
] 2 4 5
/ "\ L
/ IHI I\@I ?
0 2 oL 99
/ "\
/ IEI Ial IHI I.I I\@I
0 2 4 5 6

Dr Siba HAIDAR - Lebanese University - 12204

C - Strings

elements are variable

Iy
there is no String type in C, you have 2 'n\:\
. j hJ S
choices: str] 7/ A
— implement strings as arrays of chars with I T
the last byte "\0’ oY
* char str[10]; // to be filled later either using I \
strcpy or 1-by-1 - //\ e \\ o
« char flower[]={'T','u",I','i",'p',\0'}; //directly ower L U LI 1P \0
initialized \ \
* char message [100] = "Hi"; //simpler \ \
/ "\ L W
or message| 7 H [it [\e -
— declare initialized strings using char
pointers: //\
+ char *name = "Eva H."; //array of 7 chars name L A N e L e e A
(including implied '\0’) \ Iy
* use static const char *name = "Eva H."; if \ 'l /
\ 17

N
elements are constanks

Dr Siba HAIDAR - Lebanese University - 12204

C - St”hgs _ pointer is constant

A
. . . / \
there is no String type in C, you have 2 //’
choices: < str[7 o
— implement strings as arrays of chars with | S - T
the last byte '\0’ | ~

* char str[10]; // to be filled later either using | N
strcpy or 1-by-1 //\

|
+ char flower[J=(T''u, I,/i,'p,\0'); //directly | | \OWET

ITI Iul I'LI Iil Ipl I\@I

initialized |
* char message [100] = "Hi"; //simpler S~ o
~/"\
or message| 7 H it]\e! o
— declare initialized strings using char
pointers: //,7\
* char *name = "Eva H."; //array of 7 chars name | 'E'|'v'|'a'|" "|'H'|"'."|"\O'

(including implied '\0’) ;
I
|- — - pointer is variable

Dr Siba HAIDAR - Lebanese University - 12204

C - St”hgs _ pointer is constant

A
. . . / \
there is no String type in C, you have 2 //’
choices: < str[7 o
— implement strings as arrays of chars with | S - T
the last byte '\0’ | ~

* char str[10]; // to be filled later either using | N
strcpy or 1-by-1 //\

|
+ char flower[J=(T''u, I,/i,'p,\0'); //directly | | \OWET

ITI Iul I'LI Iil Ipl I\@I

initialized |
* char message [100] = "Hi"; //simpler S~ o
~/"\
or message| 7 H it]\e! o
— declare initialized strings using char
pointers: //,7\
* char *name = "Eva H."; //array of 7 chars name | 'E'|'v'|'a'|" "|'H'|"'."|"\O'
(including implied '\0’) |
* use static const char *name ="Eva H."; if I
string Is constant | = = OLV\EET’ Ls COV\SEO\V\&

& array is static (shared)

Dr Siba HAIDAR - Lebanese University - 12204

declaration +
initialisation

effect of
initialisation

elements
alteration

pointer
alteration

can

cannot

Array of char vs. char Pointer

array of char

char tabStr [8] = "hello";

equivalent to
char tabStr [8] = {'h"'e",'I,'I','0","\0"};

tabStr[2]="j'; //hejlo

char tab[8];
tabStr=tab; //CE: NA
char *ptr="lol";
tabStr=ptr; //CE: NA

can change content of tabStr if not exceed
7 characters

cannot change address of array

« CE: compilation error
« NA: Array type char[8] is not assignable

Dr Siba HAIDAR - Lebanese University - 12204

char pointer

char * ptrStr = "hello";

compiler creates string constant and assigns the
@ of first element to pointer

ptrStr[2]="j'; //RE: BA

char *ptr2="kifak";
ptrStr=ptr2;
puts(ptrStr); //kifak
ptrStr=tabStr;
puts(ptrStr); //hello

can change value of ptrPtr to point to another
string

cannot change content of chain initially created

« RE: runtime error
« BA: bad access

Demo

#include <stdio.h>
int main(){ let’s try
//char tabStr [8] = "hello";
char tabStr [8] = {'h','e","1l',"'1l","'0","\0"'};
tabStr[2]="'j"'; //hejlo
char tabl[8];
//tabStr=tab; //compilation error: Array type char[8] is not assignable
char xptr="1lol";
//tabStr=ptr; // compilation error: Array type char[8] is not assignable

char * ptrStr = "hello";

//ptrStri2]l="j'; //runtime error: Thread 1: EXC_BAD_ACCESS
char xptr2="kifak";

ptrStr=ptr2;

puts(ptrStr); //kifak

ptrStr=tabStr;

puts(ptrStr); //hello

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

How do | decide which choice | opt for?

Answer:

1. declare an array of char: char s[somesize] inside function bodies
when you need to edit the elements of s: read from keyboard and
fill, or concatenate, or copy from another string, or append etc.

2. declare a pointer to char: char* s as function parameters, and
when declaring constant strings (in this latter case you should
directly initialize).

Long Strings

* initialization of long string can be split across lines of source
code as follows:

static const char *longStr = "My name is Rudolph and I "
"work as a reindeer around Christmas time "
"up at the North Pole. My boss is a swell "
"guy. He likeg to give everypody gifts.";

Dr Siba HAIDAR - Lebanese University - 12204

string.h

* string.h library with numerous string functions:

strcpy (s1, s2

)

strncpy (s1, s2, n)

stremp (s, s2

)

strncmp (s1, s2, n)

strcat (s1, s2

)

strncat (s1, s2, n)

strlen (sl

strchr (s1, ch
strrchr (s1, ch
strpbrk (s1, s2

strstr (s1, s2

)

)
)
)

copies s2 into s1 (including ‘\0’ as last char)
same but only copies up to n chars of s2

returns a negative int if s1 <s2,0if s1 ==s2 and a positive int if s1 >s2

same but only compares up to n chars

concatenates s2 onto s1 (this changes s1, but not s2)
same but only concatenates up to n chars
returns the integer length of s1

return a pointer to the first occurrence of ch in s1 (or NULL if ch is not present)

same but the pointer points to the last occurrence of ch
return a pointer to the first occurrence of any character in s1 that matches a

character in s2 (or NULL if none are present)
substring, return a pointer to the char in s1 that starts a substring that matches

s2, or NULL if the substring is not present

#include <string.h>

#include <stdio.h>

int main(void){ [)
char s1[80], s2[80];
fgets(s1,80, stdin); emo
fgets(s2,80, stdin);
//print them
printf("sl: \"%s\" its lengths: %lu\n", sl1, strlen(sl));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));
//remove the 'enter' from their ends
//by moving the null char backward one place
sllstrlen(s1)-1] = '\0"';
s2[strlen(s2)-1]1 = '\0"';
printf("sl: \"%s\" its lengths: %lu\n", sl1, strlen(sl));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));

//compare using strcmp: dictionary order
int comp = strcmp(sl, s2);
int answer = (comp == 0)? @ : (comp < 0)? -1 : 1;
switch(answer){
case @: printf("The strings are equal\n"); break;

let’s try

hello my dear students!

how are you?

sl: "hello my dear students!

" its lengths: 24

s2: "how are you?

" its lengths: 13

sl: "hello my dear students!™ its lengths: 23
s2: "how are you?" its lengths: 12

sl < s2 in dictionary order

hello my dear students!'how are you?

Full Replacement ;)

the letter 'e' is in the string "hello".

the string "hi" is in the string "hi there".
Program ended with exit code: 0

case -1: printf("sl < s2 in dictionary order\n"); break;
default: printf("sl > s2 in dictionary order\n"); break;

b
strcat(sl, s2); printf("%s\n", sl1);
strcpy(sl, "Full Replacement ;)\n"); printf("%s", sl1);

if(strchr("hello", 'e')) printf("the letter \'e\' is in the string \"hello\".\n");
if(strstr("hi there", "hi")) printf("the string \"hi\" is in the string \"hi there\".\n");

return 0;

} Dr Siba HAIDAR - Lebanese University - 12204

Implementing Some Functions of string.h

int strlen(char xs) { void strcpy(char xs, char xt){
int n; int 1 = 0;
for(n = 0; *xs != '"\0'; s++) while((s[i] = t[i]l) != '\0")
n++; i++;
y return n; int strcmp(char *s, char xt){ !
int 1i;
for(i = 0; s[i] == tI[i]; i++)
if (s[i] == "\0') void strcpy(char xs, char *t){
return 0; while((xs = *t) != "\0'){
return s[i] — tI[il; S++;
} t++;
}
int strcmp(char *s, char xt){ ;
for(; *s == xt ; s++ , t++)
if (ks == '\0"')
return 0; void strcpy(char *xs, char xt){
return xs - xt; while((ks++ = *xt++) != '\0');
} }

The conciseness of the Last stremp and strepy
make them hard to understand.

intel)

while(!(succeed = try()));

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

6. Arrays of Pointers

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

Multidimensional Arrays

e Csupports multidimensional
arrays
— simplest form is 2Darray

 a2Darrayisanarray of 1D
arrays

— general form declaration:
* type array_name[dim2][dim1];
— int t[3][4];

* array of 3 elements, where each
element is an array of 4 int

in a function parameter list, and
because functions can be
compiled separately

— must denote all but one dimension
of a multiple dimensional array

— void afunction(int t[][4], int size);

arrays are referenced through
pointers

— multiple ways to declare and
access 2D arrays

— more relevant when dealing with
an array of strings

Example : Fill 2D Array

#include <stdio.h>
int main(void)
{

int t[31[41, i, j;

' /% fill 2D array 2 embedded loops */ :
: for(i=0; i<3; ++1i) l
: for(j=0; j<4; ++j) !
I t[il[j] = (i x4 + j + 1) % 2; :
|

/* display numbers x/ 2 4 6 8
for(i=0; i<3; ++1i) { 10 12 14 16
for(j=0; j<4; ++j)
printf("sd\t", t[il[j]);
printf("\n");

18 20 22 24

}

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Multidimensional Arrays

int t[3][4] = {2,4,6,8,10,12,14,16,18,2@,22,24};
let's evaluate:

* what you might think t is: t1li2]
0 1 2 3 * 1 14
t 24|68 pli]l] €= *x(p + i) "l 10
1110|1214 |16 &plil ¢> p + i ** (42)
21181202224 18
((t+2)+1)
 what t looks like: 20
o/ 1 /2 0 1 N o 1 2 3. 0 1 2 3
/ I/ 2 4|6 |8|10[12]14|16|18|20(22 |24

) 1 2 3 4 5 6 7 8 9 10 11

Dr Siba HAIDAR - Lebanese University - 12204

Example : Fill 2D Array

#include <stdio.h>
int main(void)

{

: /% fill 2D array with 1 loop */

, for(p = xt, v=1; p < %t + 12; p++, v++)
I Xp = V *x 2;
|
|

/* display numbers x/ 2 4 6 8
for(i=0; i<3; ++1i) { 10 12 14 16
for(j=0; j<4; ++j)
printf("sd\t", t[il[j]);
printf("\n");

18 20 22 24

}

return 0;

Dr Siba HAIDAR - Lebanese University - 12204

Array of Pointers

: : al|
#include <stdio.h> —
int main(void){

int xal3];//array of 3 pointers —

int x[2] = {1, 2}; XL]

int y[3] = {3, 4, 5}; —
int z[4] = {6, 7, 8, 9}; YL

al@] = x; // al@] points to x[0]

alll =vy; // alll points to yl[0] z:::]

al2] = z; // al2] points to z[0]

//a is a jagged array

printf("sd ", al1l[21);//5

printf("sd ", al@][2]);//garbage value
printf("sd ", x(x(a+2)+1));//7

return 0;

Q

Dr Siba HAIDAR - Lebanese University - 12204

N

S

~

w

(S

SIS

(@)

~

Arrays of Strings

* implement an array of strings as a 2D array of chars?
— char names[120][50];

* disadvantages
— all 120 strings will be 50 chars long

Example: Arrays of Strings

#include <stdio.h>
int main(void)

char x x[] = {"hello", "goodbye", So long,and
. thanks for

"so long", "thanks for all the fish"}; all the fish

int 1i;

for(i=0; i<4;i++)
puts(x[il);

printf("slu\n", sizeof(x)/sizeof(char)); ,

return 0; hello

} goodbye

so long
thanks for all the fish
counting the ' \0' 32

Dr Siba HAIDAR - Lebanese University - 12204

Example: Arrays of Strings

#include <stdio.h>
int main(void)

{ T SN N
char x[]1[24] = {"hello", "goodbye", So long,and
. thanks for
"so long", "thanks for all the fish"}; all the fish
int 1i;
for(i=0; i<4;i++)
puts(x[i]);
printf("slu\n", sizeof(x)/sizeof(char)); ,
return 0; hello
} goodbye

so long
thanks for all the fish
96

Dr Siba HAIDAR - Lebanese University - 12204

Pointers to Pointer

 We have seen that we can have an array of arrays which is
really an array of pointers or a pointer to pointers.

* We may wish to use pointers to pointers outside of arrays as
well.

Multiple Indirection

* can havea point to * single indirection:
that points to
- the target value DX |

g W

>
N

* multiple indirection:

ref | pX

1
TN ’
IS = to access target value,

apply asterisk operator
twice

1

Example: Multiple Indirection

#include <stdio.h>
int main(void){
int x = 10;
int *x px = &x;
int xx ref = &px;

*pxX = 20;

xkref = 30;

printf("x = %d\n", X)pef

20

return 0;

Dr Siba HAIDAR

- Lebanese University - 12204

Pointers and Arrays

7. Void Pointers

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

Void Pointers (void x)

e Csupports the "pointer to void" type (void).

* Variables of this type are pointers to data of
an unspecified type. In this context, void acts as a universal

type.

* A program can convert a pointer to any type of data (int x,
char x,...) to a pointer to void (void *)and back to the
original type without losing information.

Example: void x*

#include <stdio.h> //same with float

int main(void){ p=&y;

e o printf("%.1f\t\t",*(float *)p);
int x=2, X2, *px; _ .
float y=2.1f, y2, *py; yZT*(float *)p;

void *p; printf("s.1f\t\t",y2);
//can point to any variable of any type py=(float x)p;
printf("%.1f\n",*py);
p=&X;

//to dereference p must cast first
printf("sd\t\t",*(int *)p);
x2=*(int *)p; }
printf("%sd\t\t",x2);

return 0;

//to assign value of p
//to another pointer 2 2 2
//also must cast first 2.1 2.1 2.1
px=(int *)p;

printf("sd\n",*px);

Dr Siba HAIDAR - Lebanese University - 12204

Pointers and Arrays

Pointer Definition

Pointer Operations

The NULL Pointer

Arrays as Pointers

Strings versus Arrays of Characters
Arrays of Pointers

N o Uk wNRE

Void Pointers

© YouTube

Dr Siba HAIDAR - Lebanese University - 12204

