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Chapter at a glance

• correct understanding and use of pointers is critical 
– pointers provide the means by which functions can modify their 

calling arguments
– pointers support dynamic allocation

• pointers are one of the strongest but also one of the most 
dangerous features in C/C++ 
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Chapter at a Glance

• pointers are challenging à need to know 
– when to use a pointer
– when to dereference the pointer
– when to pass an address to a variable rather than the variable value
– when to use pointer arithmetic to change the pointer value 
– how to use pointers without making your programs unreadable

• arrays in C are interesting because they are pointed to
– the variable that you declare for the array is actually a pointer to the first 

array element
• intriguing features of pointers 
– pointer arithmetic used for stepping through arrays rather than using array 

indices
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1. Pointer Definition 
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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What Are Pointers?

• a pointer is a variable that holds 
a memory address

• this address is the location of 
another object (typically another 
variable) in memory

• if one variable contains the 
address of another variable à
"the first variable points to the 
second"

Dr Siba HAIDAR - Lebanese University - I2204

p

variables in 
memory

1001

3x

1000

1001

1002

1003

1004

1005

1006

memory 
address

...
Memory



What Are Pointers?

• a pointer is a variable that holds 
a memory address

• this address is the location of 
another object (typically another 
variable) in memory

• if one variable contains the 
address of another variable à
"the first variable points to the 
second"

Dr Siba HAIDAR - Lebanese University - I2204

p

variables in 
memory

1001

3x

1000

1001

1002

1003

1004

1005

1006

memory 
address

...
Memory



What Are Pointers?

• a pointer is a variable that holds 
a memory address

• this address is the location of 
another object (typically another 
variable) in memory

• if one variable contains the 
address of another variable à
"the first variable points to the 
second"

Dr Siba HAIDAR - Lebanese University - I2204

@p

variables in 
memory

3x



Pointer Variables

• a pointer declaration consists of a base type, an asterix *, and the variable 
name
type *name;

• examples
int * p;
char* q;

• technically
– any type of pointer can point anywhere in memory

• however
– all pointer arithmetic is done relative to its base type

• so
– it is important to declare the pointer correctly
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1. Pointer Definition 
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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The Pointer Operators

• 2 special pointer operators: 
– addressing or referencing operator &
– dereference operator *
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Addressing or Referencing Operator

• given a variable c of type T

• & is a unary operator that returns the 
memory address of its operand

• m = &c;
– m receives the address of c
– m references c
– m points to c 
– m is a pointer and c is its pointee
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T c;
T *m;



Dereference Operator *

• applied to a pointer m of base type T,

• the unary operator * gives the value of 
the object of type T pointed by m

• * is the complement of &
q = *m;
• dereference m and place its value in q
• retrieve m's pointee value (3) and put it in q
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Dereference Operator *

• applied to a pointer m of base type T,

• the unary operator * gives the value of 
the object of type T pointed by m

• * is the complement of &
q = *m;
• dereference m and place its value in q
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Example: Importance of Base Type
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#include <stdio.h>

int main(void){

double x= 100.1, y;

double *p;
p = &x;

y = *p;

printf("%.1lf\n", y);

return 0;

}



Example: Importance of Base Type: Altered!!
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#include <stdio.h>

int main(void){

double x= 100.1, y;
/* The next statement causes p (which is an integer pointer)

to point to a double. */
int *p;
p = &x;
/* The next statement does not operate as expected. */
y = *p;

printf("%f\n", y);
/* won’t output 100.1 */

return 0;

}



Pointer Assignments
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#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;

}
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Pointer Assignments
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Pointer Assignments
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#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;
printf("%d\n", *p1);
printf("%d\n", *p2);

printf("%p\n", p1);
printf("%p\n", p2);
printf("%p\n", &x);
printf("%d\n", x);

p3 = &y;
printf("%d\n", *p3);
printf("%p\n", p3);
printf("%p\n", &y);
return 0;

}

/* 5 locals: 2 intialised ints */
/*           & 3 pointers to ints */
/* p1 points to x */
/* p2 receives p1’s value, both now point to x */
/* print the content of p1 */
/* print the content of p2 */

/* print the value of p1 */
/* print the value of p2 */
/* print the address of x */
/* print the value of x */

/* p3 points to y */
/* print the content of p3 */
/* print the value of p3 */
/* print the address of y */

use the %p format specifier 

in printf() to display an 

address in the format used 

by the host computer



Pointer Assignments
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#include <stdio.h>
int main(void){

int x = 3, y = 3;
int *p1, *p2, *p3;
p1 = &x;
p2 = p1;
printf("%d\n", *p1);
printf("%d\n", *p2);

printf("%p\n", p1);
printf("%p\n", p2);
printf("%p\n", &x);
printf("%d\n", x);

p3 = &y;
printf("%d\n", *p3);
printf("%p\n", p3);
printf("%p\n", &y);
return 0;

}

3x

p1

p2

@@

@

3y

p3 @@

let’s code



Pointer Arithmetic

• only two arithmetic: 
– addition (+)   
– subtraction (-)  

• example 
– let p1 be an integer pointer with a current value of 2000
– assume integers are 2 bytes long
p1++; // p1 contains 2002, not 2001
– each time p1 is incremented, it will point to the next integer (base 

type)
• the same is true of decrements
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Pointer Arithmetic

• each time a pointer is 
incremented, it points to the 
memory location of the next 
element of its base type

• each time it is decremented, it 
points to the location of the 
previous element
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Pointer Arithmetic

• each time a pointer is 
incremented, it points to the 
memory location of the next 
element of its base type

• each time it is decremented, it 
points to the location of the 
previous element
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Pointer Arithmetic

• may add or subtract integers to or from pointers
p1 = p1 + 12;

• may subtract one pointer from another in order to find the 
number of objects of their base type that separate the two

n = p1 - p2;
• all other arithmetic operations are prohibited
– may not multiply or divide pointers
– may not add two pointers
– may not apply the bitwise operators to them
– may not add or subtract type float or double to or from pointers
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NOTE: In pra
ctice, yo

u 

are not t
o assign

 static 

values to
 pointer 

variables
.  

This code is only
 used to 

show you the
 memory 

behavior.

Exercise

• Since in C language the actual values 
of the size of different primitive 
types depend on the 
implementation,

• suppose the following table is true: 

• continue the memory state for each 
of the instructions: 
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#include <stdio.h>

int main(void){
int *p = 3000, *q;
double *r = 5000, *s;
char *t = 2000, *u;

q = p + 4;

s = r - 3;

u = t + 2;

return 0;
}

primitive 
type

size in 
bytes

double 8

int 4

char 1



Exercise
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#include <stdio.h>

int main(void){
int *p = 3000, *q;
double *r = 5000, *s;
char *t = 2000, *u;

q = p + 4;

s = r - 3;

u = t + 2;

return 0;
} u

p 3000

q 3016

r 5000

s

t 2000

4976

2002

primitive 
type

size in 
bytes

double 8

int 4

char 1



Pointer Comparisons

• can compare two pointers in a 
relational expression
if(p<q) 

printf("p points to lower memory 
than q\n");

• used when 2+ pointers point to a 
common object, such as an array

• in previous exercise, the expressions 
p < q à true
s >= r à false
t == u à false
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Exercise

• draw the memory state  at each line marked by *
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#include <stdio.h>
int main() {

int a = 1;
int b = 2;
int c = 3;
int* p;
int* q; //*1
p = &a; //*2
q = &b; //*3
c = *p; //*4
p = q; //*5
*p = 13; //*6
printf("%d", *q);
return 0;

}



1. Pointer Definition 
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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The NULL Pointer

• the constant NULL is a special 
pointer value which encodes the 
idea of  "points to nothing" 
– NULL is value 0x0 (zero hex)

• it is a runtime error to 
dereference a NULL pointer

• NULL is usually drawn as a 
diagonal line between the 
corners of the pointer variable's 
box...
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The NULL Pointer

Always proceed with either one of 2 choices

1. pointer has pointee 2. pointer is NULL
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! Never leave a pointer uninitialized !



Bad Pointer Example

• what happens at runtime when 
the bad pointer is dereferenced? 
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#include <stdio.h>

void badPointer(){

int * p;

*p = 42;

}

int main(){

badPointer();

return 0;
}

?????p



Bad Pointer Example

• the bad code will compile fine, but at run-time, each 
dereference with a bad pointer will corrupt memory in some 
way

• the program will crash sooner or later

• it is up to the programmer to ensure that each pointer is 
assigned a pointee before it is used

Dr Siba HAIDAR - Lebanese University - I2204



Exercise: Swap function

• write a function "swap" which swaps the values of two 
variables of type int
– you know now that you have to use pointers J
– so, do not forget to test whether a pointer is NULL before 

dereferencing it!!

• write "swapTest" to test this function
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let’s code

memory state



1. Pointer Definition 
2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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Recall for Arrays

• declare an array using [ ] following variable name
int x[5];

• array indices start at 0

• must include size in the [ ] unless you are also initializing
int x[]  = {1, 2, 3, 4, 5};
int x[5] = {1, 2, 3, 4, 5};

• can size > =  number of items being initialized
int x[7] = {1, 2, 3, 4, 5};

– remaining elements uninitialized

• access array elements using [] syntax, example: 
x[2] = -3;

• arrays can be passed as parameters
– the type being received would be denoted as int x[ ]

void printArray(int x[], int size);
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x 1 2 3 4 5 ? ?
0 1 2 3 4 5 6

-3

x 1 2 3 4 5
0 1 2 3 4

x ? ? ? ? ?
0 1 2 3 4



Pointers and Arrays

• pointers and arrays have a close 
relationship

int x [5] = {1, 2, 3, 4, 5};
• a variable declared as an array of 

some type acts as a pointer to that 
type 
– when used by itself à it points to 

first element of array
int *p;
p = x;
• a pointer can be indexed like an 

array name
– p set to the @ of 1st element in x 
– example: access 3rd element in x

• what we have told you:

• the reality:
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x 1 2 3 4 5
0 1 2 3 4

x @ 1 2 3 4 5
0 1 2 3 4

p @ x[2]
*(p + 2)
p[2]
*(x + 2)

= -3;

-3



Pointers and Arrays

• pointers and arrays have a close 
relationship

int x [10] = {1, 2, 3, 4, 5};
int *p;
p = x;
• exactly same same?

– no
• an array variable is a constant 

pointer
• difference à an array variable 

cannot change its value
int c;
x = &c; //wrong
x++; //also wrong

• equivalent syntaxes
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Iterating through the array

Suppose you want to add the value 1 to each of the elements
int x [] = {1, 2, 3, 4, 5}, *p = NULL, i, size = sizeof(x)/sizeof(int);

way 1: array syntax (usual way)
for (i = 0; i < size ; i++)

x[i]++;

way 2:  pointer syntax (pointer arithmetic)
for (p = x; p < x + size; p++)

(*p)++;
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x @ 1 2 3 4 5
0 1 2 3 4

p @

2 3 4 5 6
c



NOTE: Array Arithmetic

(*p)++;
– increments what p points to

*(p++);
– increments the pointer to point at the next array element and then 

dereferences it to get the content
• what do each of these do?  

*p++; ++*p++; *++p;

Dr Siba HAIDAR - Lebanese University - I2204



Operators Precedence in C
Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & 
sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= 
&= ^= |=

Right to left

Comma , Left to right
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Exercise : * and ++ 
#include <stdio.h>
int main(){

int x[] = {1,2,3,4,5};
int *p = x;
printf("%d\n", *p++);
printf("%d\n", *++p);
printf("%d\n", ++*p);
for (p = x; p < x+5; p++)

printf("%d ", *p);
printf("\n");
return 0;

}
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Example: putstr() function
writes a string to the standard output 
device, one character at a time

void putstr(char s[]) {
/* index s as an array */
for(int t=0; s[t]; ++t)
putchar(s[t]);

}

another way to write the same thing

void putstr(char *s){
/* access s as a pointer */
while(*s)

putchar(*s++);
}
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Exercise: continue …
#include <stdio.h>

int main(){
int x[4] = {12, 20, 39, 43}, *y;
y = &x[0];
printf("%d\n", x[0]);
printf("%d\n", *y);
printf("%d\n", *y+1);
printf("%d\n", (*y)+1);
printf("%d\n", *(y+1));
y+=2;
printf("%d\n", *y);
*y = 38;
printf("%d\n", *y-1);
printf("%d\n", *y++);
printf("%d\n", *y);
(*y)++;
printf("%d\n", *y);
return 0;

}
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Passing Arrays

• when declaring parameters to functions
– declaring an array variable without a size is equivalent to declaring a 

pointer 
– what is being passed is a pointer to the array

• in the formal parameter list, you can either specify the 
parameter as an array or a pointer

• often this is done to emphasize the fact that the pointer 
variable will be used in a manner equivalent to an array
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Exercise : arrySum

• write a function arraySum which
returns the sum of a given array
of integers
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let’s code

memory state

#include <stdio.h>
int arraySum(int *a, int size){

int s = 0;
for( ; size > 0 ; size-- , a++)

s += *a;
return s;

}

void arraySumTest(){
int x[]={12,23,34,45},
size = 4;
printf("the sum is : %d\n", arraySum(x,size));

}

int main(){
arraySumTest();
return 0;

}
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3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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C - Strings

• there is no String type in C, you have 2 

choices:

– implement strings as arrays of chars with 

the last byte '\0’

• char str[10]; // to be filled later either using 

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly 
initialized 

• char message [100] = "Hi"; //simpler

or 

– declare initialized strings using char 

pointers:

• char *name = "Eva H."; //array of 7 chars 
(including implied '\0’)

• use static const char *name = " Eva H."; if 
string is constant
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str ? ? ? ?
0 1 2 . . . 9

flower 'T' 'u' 'l' 'i' 'p' '\0'
0 1 2 3 4 5

message 'H' 'i' '\0' ? ?
0 1 2 3 . . . 99

name 'E' 'v' 'a' ' ' 'H' '.' '\0'
0 1 2 3 4 5 6



C - Strings

• there is no String type in C, you have 2 

choices:

– implement strings as arrays of chars with 

the last byte '\0’

• char str[10]; // to be filled later either using 

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly 
initialized 

• char message [100] = "Hi"; //simpler

or 

– declare initialized strings using char 

pointers:

• char *name = "Eva H."; //array of 7 chars 
(including implied '\0’)

• use static const char *name = "Eva H."; if 
string is constant
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C - Strings

• there is no String type in C, you have 2 

choices:

– implement strings as arrays of chars with 

the last byte '\0’

• char str[10]; // to be filled later either using 

strcpy or 1-by-1

• char flower[]={'T','u','l','i','p','\0'}; //directly 
initialized 

• char message [100] = "Hi"; //simpler

or 

– declare initialized strings using char 

pointers:

• char *name = "Eva H."; //array of 7 chars 
(including implied '\0’)

• use static const char *name = "Eva H."; if 
string is constant
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Array of char vs. char Pointer
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array of char char pointer
declaration + 

initialisation char tabStr [8] = "hello"; char * ptrStr = "hello";

effect of 
initialisation

equivalent to 
char tabStr [8] = {'h','e','l','l','o','\0'};

compiler creates string constant and assigns the 
@ of first element to pointer

elements
alteration tabStr[2]='j'; //hejlo ptrStr[2]='j'; //RE: BA

pointer 
alteration

char tab[8];
tabStr=tab; //CE: NA
char *ptr="lol";
tabStr=ptr; //CE: NA

char *ptr2="kifak";
ptrStr=ptr2;
puts(ptrStr); //kifak
ptrStr=tabStr;
puts(ptrStr); //hello

can can change content of tabStr if not exceed 
7 characters 

can change value of ptrPtr to point to another 
string

cannot cannot change address of array cannot change content of  chain initially created

• CE: compilation error
• NA: Array type char[8] is not assignable

• RE: runtime error
• BA: bad access



Demo
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#include <stdio.h>
int main(){

//char tabStr [8] = "hello";
char tabStr [8] = {'h','e','l','l','o','\0'};
tabStr[2]='j'; //hejlo
char tab[8];
//tabStr=tab; //compilation error: Array type char[8] is not assignable
char *ptr="lol";
//tabStr=ptr; // compilation error: Array type char[8] is not assignable

char * ptrStr = "hello";
//ptrStr[2]='j'; //runtime error: Thread 1: EXC_BAD_ACCESS
char *ptr2="kifak";
ptrStr=ptr2;
puts(ptrStr); //kifak
ptrStr=tabStr;
puts(ptrStr); //hello

return 0;
}

let’s try



How do I decide which choice I opt for?

Answer: 
1. declare an array of char: char s[somesize] inside function bodies 

when you need to edit the elements of s: read from keyboard and 
fill, or concatenate, or copy from another string, or append etc.

2. declare a pointer to char: char* s as function parameters, and 
when declaring constant strings (in this latter case you should 
directly initialize).
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Long Strings
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• initialization of long string can be split across lines of source 
code as follows:
static const char *longStr = "My name is Rudolph and I "

"work as a reindeer around Christmas time "
"up at the North Pole. My boss is a swell "
"guy. He likes to give everybody gifts.";



string.h
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• string.h library with numerous string functions:
strcpy (s1,  s2     ) copies s2 into s1 (including ‘\0’ as last char)
strncpy (s1,  s2,  n) same but only copies up to n chars of s2

strcmp (s1,  s2      ) returns a negative int if s1 < s2, 0 if s1 = = s2 and a positive int if s1 > s2

strncmp (s1,  s2,  n) same but only compares up to n chars
strcat (s1,   s2     ) concatenates s2 onto s1 (this changes s1, but not s2)
strncat (s1,   s2,  n) same but only concatenates up to n chars
strlen (s1              ) returns the integer length of s1

strchr (s1,  ch ) return a pointer to the first occurrence of ch in s1 (or NULL if ch is not present)

strrchr (s1,  ch ) same but the pointer points to the last occurrence of ch

strpbrk (s1,  s2      ) return a pointer to the first occurrence of any character in s1 that matches a 
character in s2 (or NULL if none are present)

strstr (s1,  s2     ) substring, return a pointer to the char in s1 that starts a substring that matches 
s2, or NULL if the substring is not present



Demo
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#include <string.h>
#include <stdio.h>
int main(void){

char s1[80], s2[80];
fgets(s1,80, stdin);
fgets(s2,80, stdin);
//print them
printf("s1: \"%s\" its lengths: %lu\n", s1, strlen(s1));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));
//remove the 'enter' from their ends
//by moving the null char backward one place
s1[strlen(s1)-1] = '\0';
s2[strlen(s2)-1] = '\0';
printf("s1: \"%s\" its lengths: %lu\n", s1, strlen(s1));
printf("s2: \"%s\" its lengths: %lu\n", s2, strlen(s2));

//compare using strcmp: dictionary order
int comp = strcmp(s1, s2);
int answer = (comp == 0)? 0 : (comp < 0)? -1 : 1;
switch(answer){

case 0: printf("The strings are equal\n"); break;
case -1: printf("s1 < s2 in dictionary order\n"); break;
default: printf("s1 > s2 in dictionary order\n"); break;

}
strcat(s1, s2); printf("%s\n", s1);
strcpy(s1, "Full Replacement ;)\n"); printf("%s", s1);
if(strchr("hello", 'e')) printf("the letter \'e\' is in the string \"hello\".\n");
if(strstr("hi there", "hi")) printf("the string \"hi\" is in the string \"hi there\".\n");
return 0;

}

hello my dear students!
how are you?
s1: "hello my dear students!
" its lengths: 24
s2: "how are you?
" its lengths: 13
s1: "hello my dear students!" its lengths: 23
s2: "how are you?" its lengths: 12
s1 < s2 in dictionary order
hello my dear students!how are you?
Full Replacement ;)
the letter 'e' is in the string "hello".
the string "hi" is in the string "hi there".
Program ended with exit code: 0

let’s try



Implementing Some Functions of string.h

Dr Siba HAIDAR - Lebanese University - I2204

int strlen(char *s) {
int n;
for(n = 0; *s != '\0'; s++)

n++;
return n;

}

void strcpy(char *s, char *t){
while( (*s = *t) != '\0'){

s++;
t++;

}
}

void strcpy(char *s, char *t){
while((*s++ = *t++) != '\0');

}

void strcpy(char *s, char *t){
int i = 0;
while( (s[i] = t[i]) != '\0')

i++;
}int strcmp(char *s, char *t){

int i;
for(i = 0; s[i] == t[i]; i++)

if (s[i] == '\0')
return 0;

return s[i] – t[i];
}

The conciseness of the last strcmp and strcpy
make them hard to understand.

int strcmp(char *s, char *t){
for( ; *s == *t ; s++ , t++)

if (*s == '\0')
return 0;

return *s - *t;
}



while(!(succeed = try()));
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2. Pointer Operations
3. The NULL Pointer
4. Arrays as Pointers
5. Strings versus Arrays of Characters
6. Arrays of Pointers
7. Void Pointers
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Pointers and Arrays



Multidimensional Arrays

• C supports multidimensional 
arrays
– simplest form is 2Darray 

• a 2D array is an array of 1D 
arrays
– general form declaration:

• type array_name[dim2][dim1];
– int t[3][4]; 

• array of 3 elements, where each 
element is an array of 4 int

• in a function parameter list, and 
because functions can be 
compiled separately
– must denote all but one dimension 

of a multiple dimensional array
– void afunction(int t[ ][4], int size);

• arrays are referenced through 
pointers
– multiple ways to declare and 

access 2D arrays
– more relevant when dealing with 

an array of strings
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Example : Fill 2D Array
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#include <stdio.h>
int main(void)
{

int t[3][4], i, j;

/* fill 2D array 2 embedded loops */
for(i=0; i<3; ++i)

for(j=0; j<4; ++j)
t[i][j] = (i * 4 + j + 1) * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}



0 1 2 0 1 2 3 0 1 2 3 0 1 2 3

t 2 4 6 8 10 12 14 16 18 20 22 24
0 1 2 3 4 5 6 7 8 9 10 11

Multidimensional Arrays

int t[3][4] = {2,4,6,8,10,12,14,16,18,20,22,24}; 

• what you might think t is:

• what t looks like:

let's evaluate: 
t[1][2]

14
*t[1]

10
**(t+2)

18
*(*(t+2)+1)

20
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p[i] ßà *(p + i)
&p[i] ßà p + i  

Recall 0 1 2 3

t 0 2 4 6 8
1 10 12 14 16
2 18 20 22 24



#include <stdio.h>
int main(void)
{

int t[3][4], i, j;

/* fill 2D array 2 embedded loops */
for(i=0; i<3; ++i)

for(j=0; j<4; ++j)
t[i][j] = (i * 4 + j + 1) * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}

Example : Fill 2D Array
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#include <stdio.h>
int main(void)
{

int t[3][4], *p=NULL, v, i, j;

/* fill 2D array with 1 loop */
for(p = *t, v=1; p < *t + 12; p++, v++)

*p = v * 2;

/* display numbers */
for(i=0; i<3; ++i) {

for(j=0; j<4; ++j)
printf("%d\t", t[i][j]);

printf("\n");
}
return 0;

}

Revisited



0 1 2

a

x 1 2
0 1

y 3 4 5
0 1 2

z 6 7 8 9
0 1 2 3

Array of Pointers
#include <stdio.h>
int main(void){
int *a[3];//array of 3 pointers
int x[2] = {1, 2};
int y[3] = {3, 4, 5};
int z[4] = {6, 7, 8, 9};
a[0] = x; // a[0] points to x[0]
a[1] = y; // a[1] points to y[0]
a[2] = z; // a[2] points to z[0]
//a is a jagged array
printf("%d ", a[1][2]);//5
printf("%d ", a[0][2]);//garbage value
printf("%d ", *(*(a+2)+1));//7
return 0;

}
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Arrays of Strings

• implement an array of strings as a 2D array of chars?
– char names[120][50];

• disadvantages
– all 120 strings will be 50 chars long
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Example: Arrays of Strings
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counting the ' \0'

#include <stdio.h>
int main(void)
{

char * x[ ] = {"hello", "goodbye",
"so long", "thanks for all the fish"};

int i;
for(i=0;i<4;i++)

puts(x[i]);
printf("%lu\n", sizeof(x)/sizeof(char));
return 0;

}



Example: Arrays of Strings
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#include <stdio.h>
int main(void)
{

char x[][24] = {"hello", "goodbye",
"so long", "thanks for all the fish"};

int i;
for(i=0;i<4;i++)

puts(x[i]);
printf("%lu\n", sizeof(x)/sizeof(char));
return 0;

}



Pointers to Pointer

• We have seen that we can have an array of arrays which is 
really an array of pointers or a pointer to pointers.

• We may wish to use pointers to pointers outside of arrays as 
well.
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Multiple Indirection

• can have a pointer point to 
another pointer that points to                                

the target value

• single indirection:

• multiple indirection:
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px x

ref px x
to access target value, 
apply asterisk operator 
twice



Example: Multiple Indirection
#include <stdio.h>
int main(void){

int x = 10;
int * px = &x;
int ** ref = &px;

*px = 20;

**ref = 30;

printf("x = %d\n", x);

return 0;
}
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ref px xref px xref px x 102030

x = 30
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Void Pointers (void *)

• C supports the "pointer to void" type (void *).

• Variables of this type are pointers to data of 

an unspecified type. In this context, void acts as a universal 

type.

• A program can convert a pointer to any type of data   (int *, 

char *, …) to a pointer to void (void *) and back to the 

original type without losing information.
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Example: void *
#include <stdio.h>
int main(void){

int x=2, x2, *px;
float y=2.1f, y2, *py;
void *p;
//can point to any variable of any type

p=&x;
//to dereference p must cast first
printf("%d\t\t",*(int *)p);
x2=*(int *)p;
printf("%d\t\t",x2);

//to assign value of p
//to another pointer
//also must cast first
px=(int *)p;
printf("%d\n",*px);

//same with float
p=&y;
printf("%.1f\t\t",*(float *)p);
y2=*(float *)p;
printf("%.1f\t\t",y2);
py=(float *)p;
printf("%.1f\n",*py);

return 0;
}
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