
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204 - Imperative Programming

Dr Siba Haidar

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Structures

Chapter 3

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

Structure Definition

A struct is a composite data type (or record)
declaration that defines a physically grouped
list of variables under one name in a block of
memory.

Dr Siba HAIDAR - Lebanese University - I2204

belongings:
- a fish
- an umbrella
- a coffee cup
- a book

Dr. Seuss’

Structure Definition

• keyword struct
• a structure declaration is a template

that may be used to create structure
variables | objects | instances

• members are the internal variables
that make up the structure, also
called elements | fields

• a structure provides convenient
means of keeping related
information together

• members of a structure are logically
related

Dr Siba HAIDAR - Lebanese University - I2204

Structure Declaration

struct struct_type_name {
type member_name;
type member_name;
type member_name;
...

} struct_variables;

• either struct_type_name or
structure_variables may be
omitted but not both

• example: employee's info
– name: char[30]
– salary: float
– phone : unsigned long

struct employee {
char name[30];
float salary;
unsigned long phone;

};

Dr Siba HAIDAR - Lebanese University - I2204

Structure Declaration

1. can declare the data type alone ,
then declare variables of this type

struct employee {
char name[30];
float salary;
unsigned long phone;

};

struct employee e;

2. can declare struct type + variables
at once

struct employee {
char name[30];
float salary;
unsigned long phone;

} a, b, c;

3. can declare anonymous struct
type + variables of this type

struct {
char name[30];
float salary;
unsigned long phone;

} a, b, c;

Dr Siba HAIDAR - Lebanese University - I2204

Structure Representation in the Memory

struct employee {
char name[30];
float salary;
unsigned long phone;

} e;

Dr Siba HAIDAR - Lebanese University - I2204

e
name

0 1 2 3 4 5 6 7 … 29

salary

phone

Structure Initialization

struct employee {
char name[30];
float salary;
unsigned long phone;

};

1. C89-style initializer

struct employee e = {"Alix",
1590.5, 96170123456};

2. designated initializer (not
supported by some compilers)

struct employee e = {.salary =
1590.5, .name = "Alix"};

• omitted elements are initialized
to their default values

Dr Siba HAIDAR - Lebanese University - I2204

The . (dot) Operator

struct employee {
char name[30];
float salary;
unsigned long phone;

} e;

• to access the members of a
structure variable, use the . (dot)
operator

• examples
e.phone = 70123456;

printf("%lu\n", e.phone);

fgets (e.name, 30, stdin);

– also name can be addressed as an
array of characters as usual

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: struct Student

• Write a C program in which,
– you define a structure type for student

containing a name, an ID, and grades
for 6 courses.

– declare a structure variable of type
student and initialize it.

– then calculate and display the student’s
average.

include <stdio.h>

int main(){

struct student{
char name[20];
int id;
float grades[6];

};

int i;
float sum = 0.0;
struct student s = {"Dr Seuss", 123, 90.0, 99.9,

80.0, 87.5, 100.0, 75.0};
for(i=0;i<6;i++)
sum += s.grades[i];

printf("average = %.1f\n", sum /6);

return 0;
}

Dr Siba HAIDAR - Lebanese University - I2204

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

The typedef Keyword

• typedef is a keyword used in C
language to assign alternative
names to existing datatypes.
– not actually creating a new data

type

typedef existing_type new_name;

typedef unsigned long ulong;

typedef unsigned int unit;

Dr Siba HAIDAR - Lebanese University - I2204

typedef and Structures

• typedef can be used to give a
name to user defined data type
as well.

typedef struct employee {
char name[30];
float salary;
unsigned long phone;

} emp;

emp e;

• can use same type_name to get
rid of keyword struct in variable
declarations!

typedef struct employee {
char name[30];
float salary;
unsigned long phone;

} employee;

employee e;

Dr Siba HAIDAR - Lebanese University - I2204

typedef and Structures

• typedef can be used to give a
name to user defined data type
as well.

• beware when typedef keyword is
present you cannot declare
structure variables at the same
time of structure declaration
– employee is new type name for the

anonymous defined struct

• can also use it with anonymous
type declarations! can also use it
with anonymous type

typedef struct {
char name[30];
float salary;
unsigned long phone;

} employee;

employee e;

Dr Siba HAIDAR - Lebanese University - I2204

The sizeof Operator

• sizeof is a unary operator that generates the
storage size of an expression or a data type,
measured in the number of char-sized units.
– sizeof (char) is guaranteed to be 1

• return type is size_t
– unsigned integer (typedef implemention dependant)

• single operand, either an expression or a data
type cast
– a cast is a data type enclosed in parenthesis

Dr Siba HAIDAR - Lebanese University - I2204

3 cm

How long
is my foot?

Demo: The sizeof Operator
#include <stdio.h>
#include <string.h>
typedef struct {
char name[30];
float salary;
unsigned long phone;

} employee;
int main(void){
char n[30]="Alix";
float s=1000.0;
unsigned long p = 96170123456;
employee e;
strcpy(e.name, n);

e.salary = s;
e.phone = p;
printf("%lu\n", sizeof n[0]);
printf("%lu\n", sizeof(char));
printf("%lu\n", sizeof s);
printf("%lu\n", sizeof(float));
printf("%lu\n", sizeof p);
printf("%lu\n", sizeof(unsigned long));
printf("%lu\n", sizeof e);
printf("%lu\n", sizeof(employee));
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

1
1
4
4
8
8
48
48

attention:
implementation
dependant

48 = $%&'() ' ≥ +$%&'() %,$)%'-.$ = 42

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

Structure Assignment

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>

int main(void){

typedef struct { int x, y;} Point;

Point a = {10, 5}, b;

b = a;

a.y += 10;

printf("%d\n", a.y);
printf("%d\n", b.y);
return 0;

}

a
x

y

b
x

y

15
5

5

15

10

10

5

Memory State

main swapTest swap

a
x p1

y

p2
b

x

y tmp

Passing Structure Members
#include <stdio.h>
void swap(int *p1, int *p2){
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}
void swapTest(){
typedef struct { int x, y;} Point;
Point a = {1, 2}, b = {3,4};
swap(&a.x, &b.y);
printf("%d %d\n", a.x, b.y);

}
int main(){
swapTest();
return 0;

}
Dr Siba HAIDAR - Lebanese University - I2204

2

1

4

3

4 1

z

z

11

4

Passing Structures

• recall that, passing data from argument in the call to the
parameter in the function behaves exactly like an assignment
operation.

• type of argument must match type of parameter
• to be visible from both caller and called functions, you must

make global the declaration of the structure type

Dr Siba HAIDAR - Lebanese University - I2204

Example: Passing Structures
#include <stdio.h>
typedef struct {

char name[30];
float salary;
unsigned long phone;

} employee;

void printSalaryRaise(employee e, int percent){
e.salary += e.salary * percent / 100;
printf("%.1f\n", e.salary);

}

void printSalaryRaiseTest(){
employee e = {"Dr. Seuss", 1000.0,

70123456};
printSalaryRaise(e, 20);
printf("%.1f\n", e.salary);

}

int main(){
printSalaryRaiseTest();
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

main

e e
name "Dr. Seuss\0" name "Dr. Seuss\0"

salary 1000.0 salary 1000.0

phone 70123456 phone 70123456

percent 20

printSalaryRaiseTest printSalaryRaise
Memory State

1200.0
1000.0

Find the Mistake

#include <stdio.h>
struct type1{

int a, b;
char ch;

};

struct type2{
int a, b;
char ch;

};

void f1(struct type2 parm){
printf("%d\n", parm.a);

}

int main(void){
struct type1 arg;
arg.a = 1000;
f1(arg);
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

type mismatch:
Passing 'struct type1' to
parameter of incompatible type
'struct type2’

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

Arrays of Structures
• most common usage
• declare array of structures
– define a structure
– declare an array variable of

that type
• example
– in a company, there is

more than one employee
– declare 100-element array

of structures of type
employee

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
typedef struct {
char name[30];
float salary;
unsigned long phone;

} employee;
int main(void){
employee employees[100];
int i;
// ...
//print list of names + salaries:
for (i=0;i<100;i++){
printf("%s's salary: ", employees[i].name);
printf("%.1f\n", employees[i].salary);

}
return 0;

}

Arrays of Structures
• most common usage
• declare array of structures
– define a structure
– declare an array variable of

that type
• example
– in a company, there is

more than one employee
– declare 100-element array

of structures of type
employee

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
typedef struct {
char name[30];
float salary;
unsigned long phone;

} employee;
int main(void){
employee employees[100];
int i;
// ...
//print list of names + salaries:
for (i=0;i<100;i++){
printf("%s's salary: ", employees[i].name);
printf("%.1f\n", employees[i].salary);

}
return 0;

}

employees
name name name

0 1 2 3 4 5 6 7 … 29 0 1 2 3 4 5 6 7 … 29 0 1 2 3 4 5 6 7 … 29

salary salary salary

phone phone phone

0 1 . . . 99

. . .

Nested Structures

• members of structure may be of
– simple type, or
– compound type: 1D arrays, multidimensional arrays, other data

types

Dr Siba HAIDAR - Lebanese University - I2204

Nested Structures
typedef struct {
char city[20];
int zipcode;

} address;

typedef struct {
char name[30];
float salary;
unsigned long phone;
address addr;

} employee;

//...
employee e;
e.addr.zipcode = 3256;

Dr Siba HAIDAR - Lebanese University - I2204

e
name

0 1 2 3 4 5 6 7 … 29

salary

phone

addr
city

0 1 2 3 … 19

zipcode 3256

1. Definition, Use and the Dot Operator

2. typedef & sizeof

3. Passing Structures

4. Nested Structures

5. Pointers to Structure

Dr Siba HAIDAR - Lebanese University - I2204

Structures

Pointers to Structures

• C allows pointers to structures just as it
allows pointers to any other type of
variable

• example

employee * pe;

• 2 primary uses for structure pointers
– pass a structure to a function using call by

reference
– create linked lists and other dynamic data

structures that rely on dynamic allocation

Dr Siba HAIDAR - Lebanese University - I2204

pe

name
0 1 2 3 4 5 6 7 … 29

salary

phone

addr
city

0 1 2 3 … 19

zipcode

The -> (Arrow) Operator
typedef struct {

char city[20];
int zipcode;

} address;

typedef struct {
char name[30];
float salary;
unsigned long phone;
address addr;

} employee;

employee e = ...;
employee * pe = &e;

//access zipcode using pe
(*pe).addr.zipcode=3256;

Dr Siba HAIDAR - Lebanese University - I2204

• accessing members through
pointers

becomes more complicated with more
nested structures and more pointers
(*(*(*x).y).z).i

WHAT?

3256

The -> (Arrow) Operator

#include <stdio.h>
typedef struct {int i;} Z;
typedef struct {Z * pz;} Y;
typedef struct {Y * py;} X;
int main(void){
Z aZ = {3};
Y aY = {&aZ};
X aX = {&aY};
X *px = &aX;
printf ("%d\n", aZ.i);
// via pX put 4 instead 3
(*(*(*px).py).pz).i = 4;
printf ("%d\n", aZ.i);
return 0;

}
Dr Siba HAIDAR - Lebanese University - I2204

I
QUIT!

34
aZ

i

aY
pz

aX
py

px

aZ
i

aY
pz

aX
py

px

The -> (Arrow) Operator

#include <stdio.h>
typedef struct {int i;} Z;
typedef struct {Z * pz;} Y;
typedef struct {Y * py;} X;
int main(void){
Z aZ = {3};
Y aY = {&aZ};
X aX = {&aY};
X *px = &aX;
printf ("%d\n", aZ.i);
// via pX put 4 instead 3
px->py->pz->i = 4;
printf ("%d\n", aZ.i);
return 0;

}
Dr Siba HAIDAR - Lebanese University - I2204

4

Much better.
Thank you!

pe

name
0 1 2 3 4 5 6 7 … 29

salary

phone

addr
city

0 1 2 3 … 19

zipcode

The -> (Arrow) Operator
typedef struct {

char city[20];
int zipcode;

} address;

typedef struct {
char name[30];
float salary;
unsigned long phone;
address addr;

} employee;

employee e = ...;
employee * pe = &e;

//access zipcode using pe
pe->addr.zipcode=3256;

Dr Siba HAIDAR - Lebanese University - I2204

• accessing members through
pointers

3256

Revisited

main

e pe
name "Dr. Seuss\0"

percent 20
salary 1000.0

phone 70123456

Memory State
raiseSalaryTest raiseSalary

Example: Passing Structure Reference
#include <stdio.h>
typedef struct {

char name[30];
float salary;
unsigned long phone;

} employee;

void raiseSalary(employee *pe, int percent){
pe->salary += pe->salary * percent / 100;

}

void raiseSalaryTest(){
employee e = {"Dr. Seuss", 1000.0,

70123456};
raiseSalary(&e, 20);
printf("%.1f\n", e.salary);

}

int main(){
raiseSalaryTest();
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

z

1200.0

Revisited

Recursive Structures

• what is the meaning of
struct rec {int i; struct rec r;};

– it is impossible to allocate a variable of this type in the memory
– so, without pointer à not allowed

• with pointer
struct rec {int i; struct rec *r;};

– of course allowed
–à next chapter

Dr Siba HAIDAR - Lebanese University - I2204

typedef and Pointers

• typedef can be used to give an alias name to pointers also

int* x, y;
– declares x of type int*, however y of type int

typedef int* IntPtr;
IntPtr x, y, z;
– declare any number of pointers in a single statement

typedef struct t{ int a,b; } * u;
– declares u as an alias name for struct t*

Dr Siba HAIDAR - Lebanese University - I2204

Exercise: Use of (->) Memory State

Dr Siba HAIDAR - Lebanese University - I2204

include <stdio.h>
typedef struct s{
int i;
struct s* s1;

} t;
int main(){
t a, b, *c;
a.i = 10;
b.i = 5;
a.s1 = b.s1 = &b;
a.s1->i = 3;
printf("%d\n", b.i);
c = &a;
printf("%d\n", c->s1->i);
return 0;

}

• Can you draw the memory state?

