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About this course

• 3 sessions per week

• prerequisites: I1101  (old INFO203) à Imperative Programming I
• 50 hours 
• resources to be available online after each lesson
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Day What Time Platform

Monday Lecture
(recorded offline) 9:50 – 11:30 YouTube

Wednesday LAB 9:50 – 11:30 (Hacker Rank |Moodle) 
& Microsoft Teams 

Friday Exercises 9:50 – 11:30 Microsoft Teams



Course Objectives

• The purpose of this module is to 
– deepen the study of the imperative programming 
– through the use of advanced aspects of the imperative language 

seen in I1101

• The student must be able to 
– implement the concepts covered in this course 
– to create an application solving a complex problem as modules
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Course Outline

• recursive functions
• structures 
• pointers & arrays
• linked lists
• input / outputs
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Lebanese University
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2nd Year – S3

Recursion

Chapter 1



1. The memory state and function calls
2. Recursive functions, their types and 

rules
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Recursion



Exercise 1

• Write a C program which reads an integer number, calculates 
its double and displays it on the screen

• Draw the memory state
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Exercise 2

• Write a program which does the same as in exercise 1 but this 
time using functions

• the program calls 
– a function "readNum" to read a number and return it
– a function "doubleIt" to calculate the double of the number
– a third function "display" to display the result

• Draw the memory state
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Exercise 3

• Write a program which
– calls a function  "read10Nums" to read 10 integers
– calls another function "avg" to calculate and return the average of 

the integers 
– the function "display" to display the result

• Draw the memory state
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Recall

• how to give functions a type?
• what are the arguments used for?
• can we call any function in C from within any other function?
• can we define any function in C within any other function?
• what is the difference of parameter and arguments?
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Parameter vs. Argument

• parameter
– refers to any declaration within the 

parentheses following the function 
name 

– in a function declaration or 
definition

– ex: 
• int max(int a, int b);

• argument
– refers to any expression within the 

parentheses 
– of a function call

– ex:
• int m=max(3,x);
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Definition & Declaration

• defining a function is where you actually provide a definition
– what the function actually does
– between { } 
• int addTwo(int a, int b) { return a + b; } 

• declaring a function is simply telling the compiler about 
the function

• int addTwo(int a, int b);
• you can also write
• int addTwo(int, int);
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Function call

• every function in C may be called from any other or itself
• each invocation of a function causes a new allocation of the 

variables declared inside it
• declarations had something missing
– keyword auto à ‘automatically allocated’
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Example
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function call

function definition



The Keyword auto

• storage for auto variables à
– automatically allocated on function entry
– automatically freed on function return
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Exercise 4

• Write a program which does calls 
– the function "readNum" to read a number and return it
– the function "doubleIt" to calculate the double of the number
– then again the function "readNum" to read another number and 

return it
– and the function "doubleIt" to calculate the double of that other 

number
– a third function "display" to display the sum of the results

• Draw the memory state
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Test functions

• every time we write a function "anyFunction"
– we must write another void function to test it
– we call it "anyFunctionTest"
• same name with Test suffix

– the test function must not read inputs from the keyboard 
• for not to waste time 
• it provides static test values

– should try to cover all test cases
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1. The memory state and function calls
2. Recursive functions, their types and 

rules
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Recursion

• what is recursion?
– when one function calls ITSELF directly or indirectly.

• why learn recursion?
– new mode of thinking
– powerful programming tool
– divide-and-conquer paradigm

• many computations are naturally self-referential
– a directory contains files and other directories
– Euclid's gcd algorithm
– quicksort algorithm
– linked data structures

Dr Siba HAIDAR - Lebanese University - I2204



Recursive Function

• a recursive function definition has 
– one or more base cases,
• input(s) for which the function produces a result trivially (without recurring), 

and 
– one or more recursive cases, 
• input(s) for which the program recurs (calls itself)
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Example: Factorial

• factorial function can be defined recursively by the equations
– 0! = 1 and, 
– for all n > 0, n! = n x (n − 1)!

• neither equation by itself constitutes a complete definition;
– the first is the base case
– the second is the recursive case

• because the base case breaks the chain of recursion, it is 
sometimes also called the "terminating case"
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Example: Factorial
#include<stdio.h>
int factorial(int n) {

if (n<0)
return -1; //we do not treat <0 numbers

else
if(n==0)

return 1;
return factorial(n-1) * n;

}
void factorialTest() {

printf("Factorial of %d = %d",-1, factorial(-1));
printf("Factorial of %d = %d", 0, factorial(0) );
printf("Factorial of %d = %d", 3, factorial(3) );

}
int main(){

factorialTest();
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204



Types of Recursion

• Direct Recursion
– A function is said to be direct 

recursive if it calls itself directly.

• Indirect Recursion
– A function is said to be indirect 

recursive if it calls another function 
and this new function calls the 
first calling function again.
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int func2(int);

int func1(int n) {
if ( n <= 1)

return 1;
return func2(n);

}

int func2(int n) {
return func1(n);

}

int fibo(int n) {
if ( n == 1 || n == 2)

return 1;
return ( fibo(n-1) + fibo(n-2) );

}



Quick Sort Algorithm
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Example 2: https://youtu.be/cnzIChso3ccExample 1: https://youtu.be/tIYMCYooo3c



Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q
• example
– suppose p = 32 and q = 24
– integers that evenly divide both p and q: 1, 2, 4, 8
–è d = 8 (the largest)

• how would you compute gcd?
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Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q
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Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q
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int gcd (int p, int q){
if (q == 0)

return p;
return gcd(q, p % q);

}



Tracing Recursive Functions 

• "winding" part
– recursion heads to base case

– example: a() calls b(), and b() calls c(), and c() calls d()

• "unwinding" part 
– returns back to original call

– example: d() done, it goes back to c(), … to b(), … to a()
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Exercise 5

• Write a program in C to calculate the sum of numbers from 1 
to n using recursion.
– Test Data :
• Input the last number of the range starting from 1 : 5

– Expected Output :
• The sum of numbers from 1 to 5 : 15
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Exercise 6

• Write a program in C to count the digits of a given number 
using recursion.

• Test Data :
– Input a number : 50

• Expected Output :
• The number of digits in the number is : 2
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Why is this wrong?

int noOfDigits(int n1) {
static int ctr=0;
if(n1!=0) {

ctr++;
noOfDigits(n1/10);

}
return ctr;

}
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Tail Recursion

• tail-recursive function
– no additional work after recursive 

call
– except return
– often require an additional 

parameter

• non tail-recursive functions
– after the recursive call there is still 

work to do
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int tailRec(int x, int y){
if(...){

...
}
else{

...
return tailRec(...,...);

}
}

int nonTailRec(int x, int y){
if(...){

...
}
else{

...
return nonTailRec(...,...) + 3;

}
}



Tail Recursion

• The goal of tail recursion in its simplest form is to return the 
answer that we have accumulated throughout all of the 
function calls in the last frame.
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Exercise 7: Recursive Print

• is print a tail-recursive function?
• output?
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#include <stdio.h>
void print(int n){

if(n < 1)
return;

print(n -1);
printf("%d\n", n);

}
void printTest(){

print(5);
}
int main(){

printTest();
return 0;

}



Exercise 8

• write a tail-recursive function 
which produces the inverse 
output as the previous exercise

• when called with parameter n=5

5
4
3
2
1
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rec call

non-tail

Exercise 9

• write a recursive function which 
prints on the screen a triangle of 
stars pointing up

• example: triangle(9)

*
***
*****
*******
*********
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#include <stdio.h>
void triangle(int n){

int i = 0;
if (n <=0)

return;
triangle(n-2);
for(i=0;i<n;i++)

printf("*");
printf("\n");

}
void triangleTest(){

triangle(9);
}
int main(){

triangleTest();
return 0;

}



Exercise 10

• write a recursive function which 
prints on the screen a triangle of 
stars pointing down

• example: triangle(9)

*********
*******
*****
***
*
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tail

#include <stdio.h>
void triangle(int n){

int i = 0;
if (n <=0)

return;
for(i=0;i<n;i++)

printf("*");
printf("\n");
triangle(n-2);

}
void triangleTest(){

triangle(9);
}
int main(){

triangleTest();
return 0;

}

rec call  



Exercise 11

• write a tail recursive factorial function

• you can use a helper function
– a helper function???
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What are Helper Functions?

• Helper functions are useful when you want to extend the 
amount of parameters that a certain function takes in. 

• Helper functions are generally used to make our lives easier. 
• This occurs most often when working with recursion, 

especially if you want your function to be tail recursive.
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Let’s look again at Factorial

#include<stdio.h>
int factorial(int n) {

if(n==0)
return 1;

return factorial(n-1) * n  ; 
}
void factorialTest() {

int num=3,f;
f=factorial(num);
printf("Fact %d = %d",num,f);

}
int main(){

factorialTest();
return 0; 

}

• We know that we can’t do this 
while only taking in a single 
parameter, n, so we look to 
create a helper function.
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Exercise 11
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#include<stdio.h>
int factorialHelper(int, int);

int factorial(int n){
if (n < 0)

return -1;
return factorialHelper(n, 1);

}
int factorialHelper(int n, int p) {

if( n==0 )
return p;

p *= n;
return factorialHelper (n-1, p);

}

void factorialTest() {
int num=3,f;
f=factorial(num);
printf("Fact %d = %d",num, f);

}
int main(){

factorialTest();
return 0;

}



Exercise 12

• Write a program in C to print the array elements using 
recursion.
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Exercise 13

• Write a program in C to check whether a given string is a 
palindrome or not.
– Input a word to check for palindrome : mom
– Expected Output :
• The entered word is a palindrome. 
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Exercise 14

• write a tail recursive function 
– to apply binary search inside 

sorted arrays
– find whether a given number n is 

inside the array 
• no à return -1
• yes  à return its first occurrence 

index

• example
– find if 3 is there
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1 2 3 3 5 6 7 8

1 2 3 3



Rule of Thumb

• Tail-recursive functions are faster if they don't need to reverse 
the result before returning it.
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THE EFFECTIVENESS OF RECURSION
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Possible Pitfalls With Recursion

• recursion can potentially consume 
more memory than an equivalent 
iterative solution
– because the latter can be optimized 

to take up only the memory it strictly 
needs

– but recursion saves all local variables 
on the stack

– thus taking up a bit more than strictly 
needed

• recursion can take a long time if it 
needs to repeatedly recompute 
intermediate results
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Example: Fibonacci Numbers

• infinite serie 
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . 

• a natural for recursion
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Example: Fibonacci Numbers

• What about this solution:

• Spectacularly inefficient Fibonacci!
– why?

• takes really long time to compute F(40)= ? 
– F(39) is computed once
– F(38) is computed twice
– F(37) is computed 3 times
– F(36) is computed 5 times
– F(35) is computed 8 times
– ...
– F(0) is computed 165,580,141 times.

• èOverlapping cases!
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int F(int n){
if (n == 0 || n == 1)

return n;
return F(n-1) + F(n-2);

}



Exercise 15

• Can you write a better tail-recursive Fibonacci function?
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What is Recursion Good for?

• can reduce time complexity
– if you memoize the result to avoid 

overlapping (if any)

• adds clarity and reduces the 
time needed to write and debug 
code
– if input is small

• better at tree traversal
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