
Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

I2204
Imperative Programming

Dr Siba Haidar

About this course

• 3 sessions per week

• prerequisites: I1101 (old INFO203) à Imperative Programming I
• 50 hours
• resources to be available online after each lesson

Dr Siba HAIDAR - Lebanese University - I2204

Day What Time Platform

Monday Lecture
(recorded offline) 9:50 – 11:30 YouTube

Wednesday LAB 9:50 – 11:30 (Hacker Rank |Moodle)
& Microsoft Teams

Friday Exercises 9:50 – 11:30 Microsoft Teams

Course Objectives

• The purpose of this module is to
– deepen the study of the imperative programming
– through the use of advanced aspects of the imperative language

seen in I1101

• The student must be able to
– implement the concepts covered in this course
– to create an application solving a complex problem as modules

Dr Siba HAIDAR - Lebanese University - I2204

Course Outline

• recursive functions
• structures
• pointers & arrays
• linked lists
• input / outputs

Dr Siba HAIDAR - Lebanese University - I2204

Lebanese University
Faculty of Science
BS Computer Science
2nd Year – S3

Recursion

Chapter 1

1. The memory state and function calls
2. Recursive functions, their types and

rules

Dr Siba HAIDAR - Lebanese University - I2204

Recursion

Exercise 1

• Write a C program which reads an integer number, calculates
its double and displays it on the screen

• Draw the memory state

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 2

• Write a program which does the same as in exercise 1 but this
time using functions

• the program calls
– a function "readNum" to read a number and return it
– a function "doubleIt" to calculate the double of the number
– a third function "display" to display the result

• Draw the memory state

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 3

• Write a program which
– calls a function "read10Nums" to read 10 integers
– calls another function "avg" to calculate and return the average of

the integers
– the function "display" to display the result

• Draw the memory state

Dr Siba HAIDAR - Lebanese University - I2204

Recall

• how to give functions a type?
• what are the arguments used for?
• can we call any function in C from within any other function?
• can we define any function in C within any other function?
• what is the difference of parameter and arguments?

Dr Siba HAIDAR - Lebanese University - I2204

Parameter vs. Argument

• parameter
– refers to any declaration within the

parentheses following the function
name

– in a function declaration or
definition

– ex:
• int max(int a, int b);

• argument
– refers to any expression within the

parentheses
– of a function call

– ex:
• int m=max(3,x);

Dr Siba HAIDAR - Lebanese University - I2204

Definition & Declaration

• defining a function is where you actually provide a definition
– what the function actually does
– between { }
• int addTwo(int a, int b) { return a + b; }

• declaring a function is simply telling the compiler about
the function

• int addTwo(int a, int b);
• you can also write
• int addTwo(int, int);

Dr Siba HAIDAR - Lebanese University - I2204

Function call

• every function in C may be called from any other or itself
• each invocation of a function causes a new allocation of the

variables declared inside it
• declarations had something missing
– keyword auto à ‘automatically allocated’

Dr Siba HAIDAR - Lebanese University - I2204

Example

Dr Siba HAIDAR - Lebanese University - I2204

function call

function definition

The Keyword auto

• storage for auto variables à
– automatically allocated on function entry
– automatically freed on function return

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 4

• Write a program which does calls
– the function "readNum" to read a number and return it
– the function "doubleIt" to calculate the double of the number
– then again the function "readNum" to read another number and

return it
– and the function "doubleIt" to calculate the double of that other

number
– a third function "display" to display the sum of the results

• Draw the memory state

Dr Siba HAIDAR - Lebanese University - I2204

Test functions

• every time we write a function "anyFunction"
– we must write another void function to test it
– we call it "anyFunctionTest"
• same name with Test suffix

– the test function must not read inputs from the keyboard
• for not to waste time
• it provides static test values

– should try to cover all test cases

Dr Siba HAIDAR - Lebanese University - I2204

1. The memory state and function calls
2. Recursive functions, their types and

rules

Dr Siba HAIDAR - Lebanese University - I2204

Recursion

Recursion

• what is recursion?
– when one function calls ITSELF directly or indirectly.

• why learn recursion?
– new mode of thinking
– powerful programming tool
– divide-and-conquer paradigm

• many computations are naturally self-referential
– a directory contains files and other directories
– Euclid's gcd algorithm
– quicksort algorithm
– linked data structures

Dr Siba HAIDAR - Lebanese University - I2204

Recursive Function

• a recursive function definition has
– one or more base cases,
• input(s) for which the function produces a result trivially (without recurring),

and
– one or more recursive cases,
• input(s) for which the program recurs (calls itself)

Dr Siba HAIDAR - Lebanese University - I2204

Example: Factorial

• factorial function can be defined recursively by the equations
– 0! = 1 and,
– for all n > 0, n! = n x (n − 1)!

• neither equation by itself constitutes a complete definition;
– the first is the base case
– the second is the recursive case

• because the base case breaks the chain of recursion, it is
sometimes also called the "terminating case"

Dr Siba HAIDAR - Lebanese University - I2204

Example: Factorial
#include<stdio.h>
int factorial(int n) {

if (n<0)
return -1; //we do not treat <0 numbers

else
if(n==0)

return 1;
return factorial(n-1) * n;

}
void factorialTest() {

printf("Factorial of %d = %d",-1, factorial(-1));
printf("Factorial of %d = %d", 0, factorial(0));
printf("Factorial of %d = %d", 3, factorial(3));

}
int main(){

factorialTest();
return 0;

}

Dr Siba HAIDAR - Lebanese University - I2204

Types of Recursion

• Direct Recursion
– A function is said to be direct

recursive if it calls itself directly.

• Indirect Recursion
– A function is said to be indirect

recursive if it calls another function
and this new function calls the
first calling function again.

Dr Siba HAIDAR - Lebanese University - I2204

int func2(int);

int func1(int n) {
if (n <= 1)

return 1;
return func2(n);

}

int func2(int n) {
return func1(n);

}

int fibo(int n) {
if (n == 1 || n == 2)

return 1;
return (fibo(n-1) + fibo(n-2));

}

Quick Sort Algorithm

Dr Siba HAIDAR - Lebanese University - I2204

Example 2: https://youtu.be/cnzIChso3ccExample 1: https://youtu.be/tIYMCYooo3c

Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q
• example
– suppose p = 32 and q = 24
– integers that evenly divide both p and q: 1, 2, 4, 8
–è d = 8 (the largest)

• how would you compute gcd?

Dr Siba HAIDAR - Lebanese University - I2204

Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q

Dr Siba HAIDAR - Lebanese University - I2204

Greatest Common Divisor (gcd)

• find largest integer d that evenly divides into p and q

Dr Siba HAIDAR - Lebanese University - I2204

int gcd (int p, int q){
if (q == 0)

return p;
return gcd(q, p % q);

}

Tracing Recursive Functions

• "winding" part
– recursion heads to base case

– example: a() calls b(), and b() calls c(), and c() calls d()

• "unwinding" part
– returns back to original call

– example: d() done, it goes back to c(), … to b(), … to a()

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 5

• Write a program in C to calculate the sum of numbers from 1
to n using recursion.
– Test Data :
• Input the last number of the range starting from 1 : 5

– Expected Output :
• The sum of numbers from 1 to 5 : 15

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 6

• Write a program in C to count the digits of a given number
using recursion.

• Test Data :
– Input a number : 50

• Expected Output :
• The number of digits in the number is : 2

Dr Siba HAIDAR - Lebanese University - I2204

Why is this wrong?

int noOfDigits(int n1) {
static int ctr=0;
if(n1!=0) {

ctr++;
noOfDigits(n1/10);

}
return ctr;

}

Dr Siba HAIDAR - Lebanese University - I2204

Tail Recursion

• tail-recursive function
– no additional work after recursive

call
– except return
– often require an additional

parameter

• non tail-recursive functions
– after the recursive call there is still

work to do

Dr Siba HAIDAR - Lebanese University - I2204

int tailRec(int x, int y){
if(...){

...
}
else{

...
return tailRec(...,...);

}
}

int nonTailRec(int x, int y){
if(...){

...
}
else{

...
return nonTailRec(...,...) + 3;

}
}

Tail Recursion

• The goal of tail recursion in its simplest form is to return the
answer that we have accumulated throughout all of the
function calls in the last frame.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 7: Recursive Print

• is print a tail-recursive function?
• output?

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
void print(int n){

if(n < 1)
return;

print(n -1);
printf("%d\n", n);

}
void printTest(){

print(5);
}
int main(){

printTest();
return 0;

}

Exercise 8

• write a tail-recursive function
which produces the inverse
output as the previous exercise

• when called with parameter n=5

5
4
3
2
1

Dr Siba HAIDAR - Lebanese University - I2204

rec call

non-tail

Exercise 9

• write a recursive function which
prints on the screen a triangle of
stars pointing up

• example: triangle(9)

*

Dr Siba HAIDAR - Lebanese University - I2204

#include <stdio.h>
void triangle(int n){

int i = 0;
if (n <=0)

return;
triangle(n-2);
for(i=0;i<n;i++)

printf("*");
printf("\n");

}
void triangleTest(){

triangle(9);
}
int main(){

triangleTest();
return 0;

}

Exercise 10

• write a recursive function which
prints on the screen a triangle of
stars pointing down

• example: triangle(9)

*

Dr Siba HAIDAR - Lebanese University - I2204

tail

#include <stdio.h>
void triangle(int n){

int i = 0;
if (n <=0)

return;
for(i=0;i<n;i++)

printf("*");
printf("\n");
triangle(n-2);

}
void triangleTest(){

triangle(9);
}
int main(){

triangleTest();
return 0;

}

rec call

Exercise 11

• write a tail recursive factorial function

• you can use a helper function
– a helper function???

Dr Siba HAIDAR - Lebanese University - I2204

What are Helper Functions?

• Helper functions are useful when you want to extend the
amount of parameters that a certain function takes in.

• Helper functions are generally used to make our lives easier.
• This occurs most often when working with recursion,

especially if you want your function to be tail recursive.

Dr Siba HAIDAR - Lebanese University - I2204

Let’s look again at Factorial

#include<stdio.h>
int factorial(int n) {

if(n==0)
return 1;

return factorial(n-1) * n ;
}
void factorialTest() {

int num=3,f;
f=factorial(num);
printf("Fact %d = %d",num,f);

}
int main(){

factorialTest();
return 0;

}

• We know that we can’t do this
while only taking in a single
parameter, n, so we look to
create a helper function.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 11

Dr Siba HAIDAR - Lebanese University - I2204

#include<stdio.h>
int factorialHelper(int, int);

int factorial(int n){
if (n < 0)

return -1;
return factorialHelper(n, 1);

}
int factorialHelper(int n, int p) {

if(n==0)
return p;

p *= n;
return factorialHelper (n-1, p);

}

void factorialTest() {
int num=3,f;
f=factorial(num);
printf("Fact %d = %d",num, f);

}
int main(){

factorialTest();
return 0;

}

Exercise 12

• Write a program in C to print the array elements using
recursion.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 13

• Write a program in C to check whether a given string is a
palindrome or not.
– Input a word to check for palindrome : mom
– Expected Output :
• The entered word is a palindrome.

Dr Siba HAIDAR - Lebanese University - I2204

Exercise 14

• write a tail recursive function
– to apply binary search inside

sorted arrays
– find whether a given number n is

inside the array
• no à return -1
• yes à return its first occurrence

index

• example
– find if 3 is there

Dr Siba HAIDAR - Lebanese University - I2204

1 2 3 3 5 6 7 8

1 2 3 3

Rule of Thumb

• Tail-recursive functions are faster if they don't need to reverse
the result before returning it.

Dr Siba HAIDAR - Lebanese University - I2204

THE EFFECTIVENESS OF RECURSION

Dr Siba HAIDAR - Lebanese University - I2204

Possible Pitfalls With Recursion

• recursion can potentially consume
more memory than an equivalent
iterative solution
– because the latter can be optimized

to take up only the memory it strictly
needs

– but recursion saves all local variables
on the stack

– thus taking up a bit more than strictly
needed

• recursion can take a long time if it
needs to repeatedly recompute
intermediate results

Dr Siba HAIDAR - Lebanese University - I2204

Example: Fibonacci Numbers

• infinite serie
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . .

• a natural for recursion

Dr Siba HAIDAR - Lebanese University - I2204

Example: Fibonacci Numbers

• What about this solution:

• Spectacularly inefficient Fibonacci!
– why?

• takes really long time to compute F(40)= ?
– F(39) is computed once
– F(38) is computed twice
– F(37) is computed 3 times
– F(36) is computed 5 times
– F(35) is computed 8 times
– ...
– F(0) is computed 165,580,141 times.

• èOverlapping cases!

Dr Siba HAIDAR - Lebanese University - I2204

int F(int n){
if (n == 0 || n == 1)

return n;
return F(n-1) + F(n-2);

}

Exercise 15

• Can you write a better tail-recursive Fibonacci function?

Dr Siba HAIDAR - Lebanese University - I2204

What is Recursion Good for?

• can reduce time complexity
– if you memoize the result to avoid

overlapping (if any)

• adds clarity and reduces the
time needed to write and debug
code
– if input is small

• better at tree traversal

Dr Siba HAIDAR - Lebanese University - I2204

